Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Tương Thái Tài
Xem chi tiết
Nguyễn Bình Nguyên
9 tháng 5 2016 lúc 10:48

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

Nguyễn Lâm Ngọc
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Xyz OLM
2 tháng 1 2022 lúc 11:18

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình

Big City Boy
Xem chi tiết
Hùng Nguyễn
Xem chi tiết
Ngô Thành Chung
6 tháng 9 2021 lúc 21:06

\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)

⇔ \(\sqrt{x+3}>\sqrt{7-x}+\sqrt{2x-8}\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>7-x+2x-8+2\sqrt{\left(7-x\right)\left(2x-8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>x-1+2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\4>2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\sqrt{\left(7-x\right)\left(2x-8\right)}< 2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\-2x^2+22x-56< 2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\left[{}\begin{matrix}x>\dfrac{11+\sqrt{5}}{2}\\x< \dfrac{11-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}4\le x< \dfrac{11-\sqrt{5}}{2}\\\dfrac{11+\sqrt{5}}{2}< x\le8\end{matrix}\right.\)

Các giá trị nguyên của x thỏa mãn là S = {4 ; 7 ; 8}

 

Ngô Thành Chung
6 tháng 9 2021 lúc 21:06

Ấy chết sai điều kiện XĐ rồi, bạn sửa lại điều kiện thôi nhé

Sky
Xem chi tiết
Nguyễn Linh Chi
28 tháng 4 2020 lúc 14:52

ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)

<=> \(-2\le x< 0\) hoặc  \(x\ge2\)

TH1:  \(-2\le x< 0\)

Bất phương trình đúng

TH2: \(x\ge2\)(@@)

bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)

<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)

<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)

<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)

<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)

<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)

<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)

<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)

Vậy -2 \(\le\) x < 0

Khách vãng lai đã xóa
Vũ Việt Đức
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 5 2021 lúc 7:26

ĐK: x>0

\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)

\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)

\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)

\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)

Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)

Khách vãng lai đã xóa
Vũ Việt Đức
25 tháng 5 2021 lúc 7:47

bạn ơi sao lại có dấu mở ngoặc kép là sao

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
25 tháng 5 2021 lúc 8:02

dấu ngoặc kép đâu?

Khách vãng lai đã xóa
Mã Huy Hiệu
Xem chi tiết
Nguyễn Trọng Chiến
21 tháng 2 2021 lúc 11:02

ĐKXĐ:  \(x\ge1\)

\(\Rightarrow\left(\sqrt{x-1}+\sqrt{2x+1}\right)^2=1\Leftrightarrow x-1+2x+1+2\sqrt{\left(x-1\right)\left(2x+1\right)}=1\Leftrightarrow3x+2\sqrt{2x^2-x-1}=1\) \(\Leftrightarrow2\sqrt{2x^2-x-1}=1-3x\Rightarrow\left(2\sqrt{2x^2-x-1}\right)^2=\left(1-3x\right)^2\Leftrightarrow8x^2-4x-4=9x^2-6x+1\) \(\Leftrightarrow x^2-2x+5=0\Leftrightarrow\left(x-1\right)^2+4=0\Leftrightarrow\left(x-1\right)^2=-4\) vô lí vì VT\(\ge0\) mà VP<0 \(\Rightarrow\) ko có x Vậy...