\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) và \(2x+3y-z=186\)
tim x, y, z biet :
a, \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) va 2x + 3y - z = 186
b, \(\dfrac{x}{3}=\dfrac{y}{4}\) va \(\dfrac{y}{5}=\dfrac{z}{7}\) va 2x + 3y - z = 327
c, 2x = 3y = 5z va x + y - z = 95
d, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) va xyz = 810
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15giúp mk nhé :)
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x - y = 34
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) và 2x + 3y-z = 186
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{7}\) và 2x +3y - z = 372
1. \(\dfrac{x}{19}=\dfrac{y}{21};2x-y=34\)
Có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
=> \(\dfrac{2x}{38}=\dfrac{y}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=> \(\dfrac{x}{19}=2=>x=2.19=38\)
=> \(\dfrac{y}{21}=2=>y=2.21=42\)
Vậy x= 38 ; y= 42
2. \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\);\(2x+3y-z=186\)
Có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
=> \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=3=>x=3.15=45\)
=>\(\dfrac{y}{20}=3=>y=3.20=60\)
=> \(\dfrac{z}{28}=3=>z=3.28=84\)
Vậy x=45;y=60;z=84
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x -y =34
Từ \(\dfrac{x}{19}=\dfrac{y}{21}=>\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>\(\dfrac{2x}{38}=2=>2x=2.38=>2x=76=>x=76:2=>x=38\)
=>\(\dfrac{y}{21}=2=>y=2.21=>y=42\)
Vậy x=38; y=42
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x+3y-z=186
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=>\(\dfrac{2x}{30}=3=>2x=3.30=>2x=90=>x=90:2=>x=45\)
=>\(\dfrac{3y}{60}=3=>3y=3.60=>3y=180=>y=180:3=>y=60\)
=>\(\dfrac{z}{28}=3=>z=3.28=>z=84\)
Vậy x=45; y=60; z=84
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và\(\dfrac{y}{5}=\dfrac{z}{7}\)và 2x+3y-z=372
Từ\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}=>\dfrac{y}{20}=\dfrac{z}{28}\)
=>\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
=>\(\dfrac{2x}{30}=6=>2x=6.30=>2x=180=>x=180:2=>x=90\)
=>\(\dfrac{3y}{60}=6=>3y=6.60=>3y=360=>y=360:3=>y=120\)
=>\(\dfrac{z}{28}=6=>z=6.28=>z=148\)
Vậy x=90; y=120; z=148
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{18}\) điều kiện 2x+3y-14=186
\(2x+3y-14=186\)
\(\Rightarrow2x+3y=186+14=200\)
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{18}\) suy ra \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{18}=\dfrac{2x+3y}{30+60}=\dfrac{20}{9}\)
\(\Rightarrow x=15\cdot\dfrac{20}{9}=\dfrac{100}{3}\)
\(\Rightarrow y=20\cdot\dfrac{20}{9}=\dfrac{400}{9}\)
\(z=18\cdot\dfrac{20}{9}=40\)
2x + 3y - 14 = 186 => 2x + 3y = 186 + 14 = 200
\(\dfrac{x}{15}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{18}\) ⇒ \(\dfrac{2x}{30}\) = \(\dfrac{3y}{60}\) = \(\dfrac{2x+3y}{30+60}\) = \(\dfrac{200}{90}\) = \(\dfrac{20}{9}\)
=> x = \(\dfrac{20}{9}\) x 30 : 2 = \(\dfrac{100}{3}\); y = \(\dfrac{20}{9}\) x 60 : 3 = \(\dfrac{400}{9}\)
z = \(\dfrac{100}{3}\) : 15 x 18 = 40
Vậy (x, y, z) =( \(\dfrac{100}{3}\); \(\dfrac{400}{9}\); 40)
Tìm x,y,z:
\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\);\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\) và 2x + 3y - z=186
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{y}{28}=\dfrac{2x+3y-z}{15\cdot2+3\cdot20-28}=\dfrac{186}{62}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=3\Rightarrow x=45\\\dfrac{y}{20}=3\Rightarrow y=60\\\dfrac{z}{28}=3\Rightarrow z=84\end{matrix}\right.\)
Vậy: ...
Áp dụng tính chất dãy tỉ số bằng nhau :
Vậy x = 45; y= 60; z = 84
(Áp dụng t/c của dãy tỉ số bằng nhau)
1/2x=3y=4z và x-y-z=35
2/\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\):\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-z=186
1)
Ta có:
\(2x=3y=4z\Leftrightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=-420\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-420.\dfrac{1}{2}=-210\\y=-420.\dfrac{1}{3}=-140\\z=-420.\dfrac{1}{4}=-105\end{matrix}\right.\)
Vậy....
1: Ta có: 2x=3y=4z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)
mà x-y-z=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{35}{-\dfrac{1}{12}}=-420\)
Do đó: x=-210; y=-140; z=-105
2: Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó: x=45; y=60; z=84
\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\);\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-2=186
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{20}=\dfrac{z}{28}\left(1\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó: x=45;y=60; z=84
\(\dfrac{x}{3}\)= \(\dfrac{y}{4}\); \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\) và 2x + 3y - z = 186 . Khi đó tổng x + y + z = ?
Giải chi tiết các bước giải hộ tớ với ạ !
\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7
Thay \(x\) = y.\(\dfrac{3}{4}\) và z = \(\dfrac{y}{5}\).7 vào biểu thức:
2\(x\) + 3y - z = 186 ta có:
2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186
y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186
y.\(\dfrac{31}{10}\) = 186
y = 186 : \(\dfrac{31}{10}\)
y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84
\(x\) + y + z = 45 + 60 + 84 = 189
Mình không hiểu câu sau của đề bài.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó:
\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)
\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)
\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)
Tổng là: \(x+y+z=45+60+84=189\)
Vậy....
Dòng đầu tiên của câu trả lời mình viết nhầm nha.
Tìm x,y,z, bt
a, \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\&x-3y+4z=62\)
b, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\&2x+3y-5z=-21\)
c,\(\dfrac{x}{y}=\dfrac{3}{4},\dfrac{y}{z}=\dfrac{5}{7}\&2x+3y-z=186\)
d, \(2x=3y=5z\&\left|x+y-z\right|=95\)
a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)
=> x=8
3y=18=>y=6
4z=72=>z=18
Vậy x=8 ; y=6 ; z=18
b, Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)
Câu c bạn làm tương tự nhé!
d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Tìm x , y ,z biết :
a, \(\dfrac{x}{10}\) = \(\dfrac{y}{6}\) = \(\dfrac{z}{21}\) và 5x + y - 2z = 28
b, \(\dfrac{x}{15}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{28}\) và 2x + 3y - z = 124
c, \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x + y + z = 49
d, 3x = 2y ; 7y = 5z và x - y + z = 32
Các bạn cố gắng giúp mình nhé
a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{10}=\dfrac{z}{21}=\dfrac{5x+y-2z}{6\cdot5+10-2\cdot21}=\dfrac{28}{-2}=-14\)
\(\Rightarrow x=\left(-14\right)6=-84;y=\left(-14\right)10=-140;z=\left(-14\right)21=-294\)
Vậy \(x=-84;y=-140;z=-294\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
\(x=2\cdot15=30;y=2\cdot20=40;z=2\cdot28=56\)
Vậy \(x=30;y=40;z=56\)
c. Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12\left(x+y+z\right)}{49}=\dfrac{12\cdot49}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x}{18}=12\\\dfrac{12y}{16}=12\\\dfrac{12z}{15}=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
Vậy \(x=18;y=16;z=15\)
d. Ta có:
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow x=2\cdot10=20;y=2\cdot15=30;z=2\cdot21=42\)
Vậy \(x=20;y=30;z=42\)
a) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
\(\Rightarrow\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{6}=2\Rightarrow y=2.6\Rightarrow y=12\)
\(\Rightarrow\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy \(x=20;y=12\) và \(z=42\)
b) \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\)
\(\Rightarrow\) \(\dfrac{2x}{30}=2\Rightarrow2x=60\Rightarrow x=30\)
\(\Rightarrow\dfrac{3y}{60}=2\Rightarrow3y=120\Rightarrow y=40\)
\(\Rightarrow\dfrac{z}{28}=2\Rightarrow z=56\)
Vậy \(x=30;y=40;z=56\)
d) \(3x=2y;7y=5z\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow\dfrac{x}{10}=2\Rightarrow x=10.2\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{15}=2\Rightarrow y=15.2\Rightarrow y=30\)
\(\Rightarrow\) \(\dfrac{z}{21}=2\Rightarrow z=21.2\Rightarrow z=42\)
Vậy \(x=20;y=30;z=42\)