Phương trình : 2x2-5x-1=0
tính A=x1/2x2-1 + x2/2x2-1
B=1/(x1+2)2+1/(x2+2)2
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
Cho phương trình x2 - 2(m + 1) + m2 + 1 = 0, với m là tham số. Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 (x1<x2) thoả mãn :
(2x2 - 3)2 - (2x2 - 3)2 = 32m - 16
Cho phương trình: x2 - 2(m+1)x+2m+1=0 (1)
b, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:
x21 + (x1 + x2)x2 - 2x1x2 =7
c, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn
x1 - 2x2 =3
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)
\(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)
\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)
Vậy ...
\Delta'=1^2-m=1-mΔ′=12−m=1−m
phương trình có 2 nghiệm <=>\Delta'\ge0Δ′≥0
<=>1-m\ge01−m≥0
<=>m\le1m≤1
+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1+x2=−2(1)x1x2=m(2)
Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1+2x2=1(3)
từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1+x2=−23x1+2x2=1 <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1=5x2=−7. Thay vào (2) : 5.(-7)= m <=> m= -35
giai giup minh vs
Tìm giá trị của M để phương trình 2x2 -5x + 2m - 1= 0 có hai nghiệm phân biệt x1, x2 thoả mãn 1/ x1 + 1/x2 = 5/2
2x2-5x + 2m - 1 = 0 ( 1)
Dental = (-5)2 - 4*2*( 2m - 1)
= 25 - 16m + 8
= 33 - 16m
Phương trình (1) có 2 nghiệm phân biệt khi :
33 - 16m > 0
- 16m >-33
m < 33/16
Theo hệ thức vi-ét ta có:
x1 + x2 = -b/a = 5/2
x1x2 = c/a =2m - 1/2
Theo bài ch0 :1/x1 + 1/x2 = 5/2
<=>2( x2 + x1 ) = 5x1x2
<+> 2( 5/2 ) + 55 ( 2m - 1 ?2
<+> 5 = 10m -5?2
<+>
<=>2( x2 + x1 ) = 5x1x2
<=> 2( 5/2 ) = 5 ( 2m - 1 /2 )
<=> 5 - 10m + 5/2 = 0
<=> 10 - 20m + 5 = 0
<=> 15 - 20m = 0
<=> -20m = -15
<=> m = 5/4
Vậy m = 5/4 thỏa mãn yêu cầu bài toán
( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )
Cho phương trình: x2 - 5x + m - 1 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm phân biệt x1;x2 sao cho: 2x2 = \(\sqrt{x_1}\)
\(\Delta=\left(-5\right)^2-4\left(m-1\right)\)
\(=25-4m+4\)
\(=29-4m\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow m< \dfrac{29}{4}\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\) (1)
\(2x_2=\sqrt{x_1}\) ; \(ĐK:x_1;x_2\ge0\)
\(\Leftrightarrow4x_2^2=\left|x_1\right|\)
\(\Leftrightarrow4x_2^2=x_1\) (2)
Thế \(x_1=4x^2_2\) vào \(\left(1\right)\), ta được:
\(\left\{{}\begin{matrix}4x_2^2+x_2-5=0\\4x_2^3-m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_2=-\dfrac{5}{4}\left(ktm\right)\\x_2=1\left(tm\right)\end{matrix}\right.\\4.1^3-m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=1\\m=5\end{matrix}\right.\)
\(\left(2\right)\Rightarrow x_1=4\)
Vậy \(\left\{{}\begin{matrix}m=5\\x_1=4\\x_2=1\end{matrix}\right.\)
Cho phương trình 2x^2+5x-1=0
Không tính bằng cách giải phương trình, hãy tính giá trị biểu thức A=x1^2-2x1-2x2+x2^2
Tổng là -5/2 tích là -1/2
delta= \(\left(-5\right)^2-4.2.\left(-1\right)=25+8=33>0..\)
=> pt có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-et:
\(\hept{\begin{cases}x_1+x_2=-\frac{5}{2}\\x_1x_2=\frac{-1}{2}\end{cases}}\)
A= \(x_1^2-2x_1-2x_2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2-2\left(x_1+x_2\right)..\)
\(\Leftrightarrow A=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)..\)
Thay vào A ta được: \(A=\left(-\frac{5}{2}\right)^2-2.\left(-\frac{1}{2}\right)-2.\left(-\frac{5}{2}\right).\)
\(=\frac{25}{4}+1+5=\frac{49}{4}.\)
Học tốt
Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn:
x1(x1 -2x2) + x2(x2 -3x1) = 9
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
cho phương trình x^2+(n-1)x-m=0 tìm m để phương trình có 2 nghiệm x1, x2 thỏa mọi x1<x2 và x1-2x2 =2
cho phương trình x^2 - (2m-1)X +m(m-1)=0 (1)
gọi x1, x2 là 2 nghiệm của phương trình (1). với x1< x2. chứng minh: x1^2 - 2x2 + 3 >= 0
63 . 62 = 65
22 = 4
39 . 3 . 33 = 313
242 = 576
Gọi x1,x2 là nghiệm(nếu có) của phương trình 2x2-5x+1=0. Hãy lập phương trình bậc 2 có nghiệm là \(\dfrac{x_{1}}{x_{2}+1};\dfrac{x_{2}}{x_{1}+1}\)
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)
Giả sử pt bậc 2 cần tìm có các nghiệm:
\(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2+1}\\x_4=\dfrac{x_2}{x_1+1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\\x_3x_4=\left(\dfrac{x_1}{x_2+1}\right)\left(\dfrac{x_2}{x_1+1}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1^2+x_2^2+x_1+x_2}{x_1x_2+x_1+x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+x_1+x_2}{x_1x_2+x_1+x_2+1}\\x_3x_4=\dfrac{x_1x_2}{x_1x_2+x_1+x_2+1}\end{matrix}\right.\)
Thay số:
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{31}{16}\\x_3x_4=\dfrac{1}{8}\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:
\(x^2-\dfrac{31}{16}x+\dfrac{1}{8}=0\Leftrightarrow16x^2-31x+2=0\)
Lời giải:
Theo định lý Viet: $x_1+x_2=\frac{5}{2}=2,5; x_1x_2=\frac{1}{2}=0,5$
Khi đó:
\(\frac{x_1}{x_2+1}.\frac{x_2}{x_1+1}=\frac{x_1x_2}{(x_2+1)(x_1+1)}=\frac{x_1x_2}{x_1x_2+(x_1+x_2)+1}=\frac{0,5}{0,5+2,5+1}=\frac{1}{8}\)
\(\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{x_1^2+x_1+x_2^2+x_2}{(x_1+1)(x_2+1)}=\frac{(x_1+x_2)^2-2x_1x_2+(x_1+x_2)}{x_1x_2+(x_1+x_2)+1}\)
\(=\frac{2,5^2-2.0,5+2,5}{0,5+2,5+1}=\frac{31}{16}\)
Khi đó áp dụng định lý Viet đảo thì $\frac{x_1}{x_2+1}$ và $\frac{x_2}{x_1+1}$ là nghiệm của pt:
$x^2-\frac{31}{16}x+\frac{1}{8}=0$