Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Ngọc

Cho phương trình: x2 - 5x + m - 1 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm phân biệt x1;x2 sao cho: 2x2 = \(\sqrt{x_1}\)

Nguyễn Ngọc Huy Toàn
25 tháng 5 2022 lúc 15:53

\(\Delta=\left(-5\right)^2-4\left(m-1\right)\)

   \(=25-4m+4\)

   \(=29-4m\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow m< \dfrac{29}{4}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\) (1)

\(2x_2=\sqrt{x_1}\) ; \(ĐK:x_1;x_2\ge0\)

\(\Leftrightarrow4x_2^2=\left|x_1\right|\)

\(\Leftrightarrow4x_2^2=x_1\) (2)

Thế \(x_1=4x^2_2\) vào \(\left(1\right)\), ta được:

\(\left\{{}\begin{matrix}4x_2^2+x_2-5=0\\4x_2^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_2=-\dfrac{5}{4}\left(ktm\right)\\x_2=1\left(tm\right)\end{matrix}\right.\\4.1^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=1\\m=5\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x_1=4\)

Vậy \(\left\{{}\begin{matrix}m=5\\x_1=4\\x_2=1\end{matrix}\right.\)

 

 


Các câu hỏi tương tự
Nguyễn Minh Ngọc
Xem chi tiết
taekook
Xem chi tiết
mira 2276
Xem chi tiết
Gempio Louis
Xem chi tiết
Shimada Hayato
Xem chi tiết
RINBUONGTHA
Xem chi tiết
Lam Phương
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Phạm Tuân
Xem chi tiết