Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nakroth
Xem chi tiết
Girl
14 tháng 5 2019 lúc 12:48

Ta có: \(x+y+z=1\Rightarrow\hept{\begin{cases}\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\\\sqrt{y+xz}=\sqrt{y\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(y+z\right)}\\\sqrt{z+xy}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\end{cases}}\)

Ta viết lại A

\(A=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(y+z\right)\left(x+z\right)}\)

Áp dụng bđt AM-GM:

\(A\le\frac{x+y+x+z+x+y+y+z+y+z+x+z}{2}=2\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

Trần Thị Hà Giang
14 tháng 5 2019 lúc 13:08

\(x+yz=x\left(x+y+z\right)+yz\)

\(=x^2+xy+xz+yz\)

\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

+ Tương tự : \(y+xz=\left(x+y\right)\left(y+z\right)\)

\(z+xy=\left(x+z\right)\left(y+z\right)\)

+ Theo bđt AM-GM : \(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}\)

\(\Rightarrow\sqrt{\left(x-1\right)\left(y-1\right)}\le\frac{2x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=x+z\Leftrightarrow y=z\)

+ Tương tự ta cm đc : 

\(\sqrt{\left(x+y\right)\left(y+z\right)}\le\frac{x+2y+z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=z\)

\(\sqrt{\left(x+z\right)\left(y+z\right)}\le\frac{x+y+2z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=y\)

Do đó : \(A\le\frac{4\left(x+y+z\right)}{2}=2\)

A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy Max A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Bùi Vương TP (Hacker Nin...
14 tháng 5 2019 lúc 20:44

x+yz=x(x+y+z)+yz

=x2+xy+xz+yz

=x(x+y)+z(x+y)=(x+z)(x+y)

+ Tương tự : y+xz=(x+y)(y+z)

z+xy=(x+z)(y+z)

+ Theo bđt AM-GM : √(x+y)(x+z)≤x+y+x+z2 

⇒√(x−1)(y−1)≤2x+y+z2 

Dấu "=" xảy ra ⇔x+y=x+z⇔y=z

+ Tương tự ta cm đc : 

√(x+y)(y+z)≤x+2y+z2 .   Dấu "=" xảy ra ⇔x=z

√(x+z)(y+z)≤x+y+2z2 .   Dấu "=" xảy ra ⇔x=y

Do đó : A≤4(x+y+z)2 =2

A = 2 ⇔x=y=z=13 

Vậy Max A = 2 

Hồ Minh Phi
Xem chi tiết
Fire Sky
Xem chi tiết
Love Phương Forever
1 tháng 5 2019 lúc 15:52

Quẩy lên các em êii

Phùng Minh Quân
1 tháng 5 2019 lúc 16:04

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...

Lê Thị Hải Anh
Xem chi tiết
alibaba nguyễn
12 tháng 11 2018 lúc 14:15

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Bảo Khanh Đàm
Xem chi tiết
LIVERPOOL
Xem chi tiết
Nguyễn Duy Long
21 tháng 10 2017 lúc 10:42

giúp einstein nào

Nguyễn Duy Long
21 tháng 10 2017 lúc 10:45

bạn einstien đang bí bài này đó :)

camcon
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 0:02

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

Xyz OLM
31 tháng 12 2021 lúc 0:02

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:17

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Xyz OLM
30 tháng 12 2021 lúc 23:20

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)

\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)

\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4

Dấu "=" xảy ra <=> x = y = z = 2/3