Giải pt:
(x+10)(y-1)=xy và (x-10)(y+1)=xy
Help me cần gấp
giải hệ pt: xy=120
xy=(x+10)(y-1)
\(\left\{{}\begin{matrix}xy=120\\xy=\left(x+10\right)\left(y-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy=xy-x+10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\x=10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(10y-10\right)y=120\\x=10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-y-12=0\\x=10y-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4\Rightarrow x=30\\y=-3\Rightarrow x=-40\end{matrix}\right.\)
1.tính:\(\sqrt{35+\sqrt{69}}-\sqrt{35-\sqrt{69}}-\sqrt{12+8\sqrt{2}}\)
2.cho x,y,z\(\ne0\), xuz=100.tính
A\(=\)\(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10\sqrt{z}}{\sqrt{xz}+10\sqrt{z}+10}\)
3.giải pt : \(\sqrt{x-2\sqrt{x}+1}+\sqrt{x+2\sqrt{x}+1}=\frac{x+3}{2}\)
4.cho x,y>0 , \(xy=1\).CM: \(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge1\)
P/s: mình đag cần gấp ai giải đc cho 1 tick
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
Giải hệ phương trình:
\(\hept{\begin{cases}\left(x+10\right)\left(y-\frac{1}{2}\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Giúp minh với, mình đang cần gấp!!!!(╥﹏╥)
Nghiệm j mà lẻ quá trời :))))
Hệ \(\Leftrightarrow\hept{\begin{cases}xy+10y-\frac{1}{2}x-5=xy\\xy-10y+x-10=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y-\frac{1}{2}x-5=0\left(1\right)\\x-10y-10=0\left(2\right)\end{cases}}\)
Lấy (1) cộng (2) ta được:
\(x-\frac{1}{2}x-15=0\)
\(\Leftrightarrow2x-x-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{241}}{4}\left(3\right)\\x=\frac{1-\sqrt{241}}{4}\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được:
\(10y+10=\frac{1+\sqrt{241}}{4}\)
\(\Rightarrow y=\frac{-39+\sqrt{241}}{40}\)
Thay (4) vào (2) ta được \(y=-\frac{39+\sqrt{241}}{40}\)
Vậy.................
giải hệ pt
\(\left\{{}\begin{matrix}x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\\3x^2-xy^2+4x=1\end{matrix}\right.\)
mau nha cần gấp lắm rồi
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{1}{2}\left(x^2+1-y^2+y^2+1-x^2\right)=1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{1-x^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x;y\ge0\\x^2+y^2=1\end{matrix}\right.\)
\(\Rightarrow y^2=1-x^2\)
Thế xuống pt dưới:
\(3x^2-x\left(1-x^2\right)+4x=1\)
\(\Leftrightarrow x^3+3x^2+3x=1\)
\(\Leftrightarrow\left(x+1\right)^3=2\Rightarrow x=\sqrt[3]{2}-1\)
\(\Rightarrow y=\sqrt{1-x^2}=...\)
\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{1}{10}\\\frac{xy}{5y+10x}=\frac{1}{65}\end{cases}}\)
Giải hệ pt trên :
giải 2 hệ PT sau :
\(\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\)
\(\hept{\begin{cases}x+y=90\\\frac{10}{x}-\frac{10}{y}=\frac{1}{20}\end{cases}}\)
Bài 1: Tìm x,y thuộc Z biết :
a, x.y + x - y + 10 = 0
b, xy + 3x + y = 10
Bài 2: Tìm giá trị nhỏ nhất:
a, A = | x - 5 | - 100
b, B = | x + y | + | y - 10 | + 8
Giúp mình nha, tớ đang cần gấp, giải chi tiết hộ mình nha !
Ai làm đúng mình like cho, thanks nhiều !!!
câu 1L
a, xy+x-y+10=0
x(y+1)-y-1=9
x(y+1)-(y+1)=9
(x-1)(y+1)=9
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+1 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
y | 8 | -10 | 2 | -4 | 0 | -2 |
b, xy+3x+y=10
x(y+3)+(y+3)=13
(x+1)(y+3)=13
tiếp tục giống a
bài 2:
a, Vì |x-5| \(\ge\)0
=>A=|x-5|-100 \(\ge\) -100
Dấu "=" xảy ra khi x = 5
Vậy GTNN của A = -100 khi x=5
b, vì \(\hept{\begin{cases}\left|x+y\right|\ge0\\\left|y-10\right|\ge0\end{cases}\Rightarrow\left|x+y\right|+\left|y-10\right|\ge0\Rightarrow B=\left|x+y\right|+\left|y-10\right|+8\ge8}\)
Dấu "="xảy ra khi x=-10,y=10
Vậy GTNN của B = 8 khi x=-10,y=10
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$