\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\) và y-x=-8
1. Tìm x và y
a) \(\dfrac{x}{y}\) = \(\dfrac{3}{7}\) và x - y = 16
b) \(\dfrac{x}{1,8}\) = \(\dfrac{y}{3,2}\) và y - x = 7
c) \(\dfrac{x}{5}\) = \(\dfrac{y}{8}\) và x + 2y = 42
d) \(\dfrac{x}{5}\) = \(\dfrac{y}{7}\) và x . y = 35
2. Tính số học sinh của lớp 7A và lớp 7B , biết rằng lớp 7A ít hơn lớp 7B là 5 học sinh và tỉ số học sinh của hai lớp là 8 : 9
\(\dfrac{x}{y}=\dfrac{3}{7}.\\ \Rightarrow x=\dfrac{3}{7}y.\\ x-y=16.\\\Rightarrow\dfrac{3}{7}y-y=16.\\ \Rightarrow y=-28.\\ \Rightarrow x=-12.\)
\(\dfrac{x}{1,8}=\dfrac{y}{3,2}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{1,8}{3,2}=\dfrac{9}{16}.\\ \Rightarrow x=\dfrac{9}{16}y.\\ y-x=7.\\ \Rightarrow y-\dfrac{9}{16}y=7.\\ \Leftrightarrow y=16.\\ \Leftrightarrow x=9.\)
\(\dfrac{x}{5}=\dfrac{y}{8}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{8}.\\ \Rightarrow x=\dfrac{5}{8}y.\\ x+2y=42.\\ \Rightarrow\dfrac{5}{8}y+2y=42.\\ \Leftrightarrow y=16.\\ \Rightarrow x=10.\)
\(\dfrac{x}{5}=\dfrac{y}{7}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{7}.\\ \Rightarrow x=\dfrac{5}{7}y.\\ x.y=35.\\ \Rightarrow\dfrac{5}{7}y.y=35.\\ \Leftrightarrow y^2=49.\\ \Leftrightarrow u=\pm7.\\ \Rightarrow x=\pm5.\)
1. Hãy tìm x và y
a) \(\dfrac{x}{y}\) = \(\dfrac{3}{7}\) và x - y = 16
b) \(\dfrac{x}{1,8}\) = \(\dfrac{y}{3,2}\) và y - x = 17
c) \(\dfrac{x}{5}\) = \(\dfrac{y}{8}\) và x + 2y = 42
d) \(\dfrac{x}{5}\) = \(\dfrac{y}{7}\) và x . y = 35
2. Tính số học sính của lớp 7A và lớp 7B , biết rằng lớp 7A ít hơn lớp 7B là 5 học sinh và tỉ số học sinh của hai lớp là 8:9
Bài 2:
Gọi số học sinh lớp 7A là x
Số học sinh lớp 7B là y
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{y-x}{9-8}=\dfrac{5}{1}=5\)
Do đó: x=40; y=45
Tìm hai số x,y biết rằng:
a) \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55
b) \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35
a) Ta có \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{x + y}}{{4 + 7}} = \dfrac{{55}}{{11}} = 5\)
\( \Rightarrow \dfrac{x}{4} = 5 \Rightarrow x = 20\)
\( \dfrac{y}{7} = 5 \Rightarrow y = 35\)
Vậy x = 20; y = 35
b) \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{8} = \dfrac{y}{3} = \dfrac{{x - y}}{{8 - 3}} = \dfrac{{35}}{5} = 7\)
\( \Rightarrow \dfrac{x}{8} = 7\) \( \Rightarrow \) x = 56
Mà x – y = 35 \( \Rightarrow \) y = 56 – 35 = 21
Vậy x = 56 ; y = 21
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
tìm x biết : \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\) và 2x+y-7=12
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4\cdot6}{2}=12\\y=4\cdot5=20\\z=8\cdot4=32\end{matrix}\right.\)
x/3=y/5=z/8
áp dung dãy tỉ số bằng nhau
=
>x/3=y/5=z/8=2.x+y-z/2.3+5-8=12/3=4
x=12,y=20,z=32
tìm x biết
a) \(\dfrac{x}{2}\)=\(\dfrac{y}{5}\) và x+y=-14
b)\(\dfrac{x}{7}=\dfrac{y}{5}\) và x-y=8
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right)\cdot2=-4\\y=\left(-2\right)\cdot5=-10\end{matrix}\right.\)
\(b.\)
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=5\cdot4=20\end{matrix}\right.\)
Tìm x,y biết:
1) \(\dfrac{x}{5}=\dfrac{y}{7}\) và x+y = 48
2) \(\dfrac{x}{4}=\dfrac{y}{-7}\) và x-y=33
3) \(\dfrac{x}{y}=-\dfrac{2}{5}\) và x+y =12
4) \(\dfrac{x}{3}=\dfrac{y}{5}\) và 2x+4y=28
5) \(\dfrac{x}{y}=\dfrac{3}{16}\) và 3x-y=35
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
\(\dfrac{x}{5}=\dfrac{y}{4};\dfrac{y}{7}=\dfrac{z}{8}\) và x- y + z = 7
=>x/35=y/28=z/32
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{35}=\dfrac{y}{28}=\dfrac{z}{32}=\dfrac{x-y+z}{35-28+32}=\dfrac{7}{39}\)
=>x=245/39; y=196/39; z=224/39
x/5 = y/4 => 4x = 5y => x = 5y/4 (1)
y/7 = z/8 => 7z = 8y => z = 8y/7 (2)
có: x-y+z=7
từ (1) và (2) => 5y/4 - y + 8y/7 = 7
<=> 39y/28 = 7
=> y = 196/39
=> x = 245/39
=> z = 224/39
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅