Tìm góc giữa 2 đường thẳng △1: 2x-y-10=0 và △2: x-3y+9=0
Tính góc giữa 2 đường thẳng 2x+4y-1=0 và x-3y+1=0
2x+4y-1=0
=>VTPT là (2;4)
x-3y+1=0
=>VTPT là (1;-3)
\(cos\left(d1;d2\right)=\dfrac{\left|2\cdot1+\left(-4\right)\cdot3\right|}{\sqrt{2^2+4^2}\cdot\sqrt{1^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
=>\(\widehat{\left(d1;d2\right)}=45^0\)
Trong mp Oxy cho điểm A (3;-1), đường thẳng d: x+y-1=0 và đường tròn ( C ) : x^2+y^2+2x-3y-1=0.tìm ảnh của A;d và (C) qua phép quay tâm O góc quay là -90°
Tìm côsin góc giữa 2 đường thẳng d1: x+ 2y -7= 0 và d2: 2x- 4y+ 9= 0.
A. - 3 5
B. 2 5
C. 1 5
D. 3 5
Vectơ pháp tuyến của đường thẳng d1 là n1=(1;2)
Vectơ pháp tuyến của đường thẳng d2 là n2=(2;-4)
Gọi φ là góc giữa 2 đường thẳng ta có:
cos φ = n 1 . n 2 n 1 . n 2 = - 3 5
Chọn A.
Tính góc giữa hai đường thẳng ∆ : x - 3 y + 2 = 0 và ∆ ' : x + 3 y - 1 = 0
A. 90 0
B. 120 0
C. 60 0
D. 30 0
Tính góc giữa hai đường thẳng ∆ : x - 3 y + 2 = 0 và ∆ ' = x + 3 y - 1 = 0 ?
A. 90 0
B. 120 0
C. 60 0
D. 30 0
Tính số đo góc giữa hai đường thẳng \({d_1}:2x--y + 5 = 0\) và\({d_2}:x - 3y + 3 = 0\).
Vecto pháp tuyến của đường thẳng \({d_1}\) là: \(\overrightarrow {{n_1}} = \left( {2; - 1} \right)\)
Vecto pháp tuyến của đường thẳng \({d_2}\) là: \(\overrightarrow {{n_2}} = \left( {1; - 3} \right)\)
Ta có: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)
Vậy \(\left( {{d_1},{d_2}} \right) = {45^o}\)
Góc giữa 2 đường thẳng d1:x+3y-3=0 và d2: x+√3y +2=0
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;3\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(1;\sqrt{3}\right)\) là 1 vtpt
Gọi \(\alpha\) là góc giữa d1 và d2
\(\Rightarrow cos\alpha=\left|cos\left(\overrightarrow{n_1};\overrightarrow{n_2}\right)\right|=\dfrac{\left|1.1+3.\sqrt{3}\right|}{\sqrt{1^2+3^2}.\sqrt{1^2+3}}=\dfrac{3\sqrt{3}+1}{2\sqrt{10}}\)
\(\Rightarrow\alpha\approx11^034'\)
Tìm tọa độ giao điểm và góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong mỗi trường hợp sau:
a) \({d_1}:x - y + 2 = 0\) và \({d_2}:x + y + 4 = 0\)
b) \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 3 + 2t\end{array} \right.\) và \({d_2}:x - 3y + 2 = 0\)
c) \({d_1}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 1 + 3t'\\y = 3 + t'\end{array} \right.\)
a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)
b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)
c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:
\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)
(Bài này làm như thế nào vậy ạ???)
Cho hai đường thẳng (d2): 4x+3y-23=0 và (d1): y=1, biết đường thẳng d là đường phân giác góc tù tạo bởi hai đường thẳng d1 và d2. Phương trình đường thẳng d là?
A. 2x-y+9=0
B. -2x-y+9=0
C. 2x+y+9=0
D. 2x-y-9=0