Cho P=(a+b+c)-(a-b)+(a+c) và Q=a+2b. Chứng tỏ P=Q
1 Chứng tỏ rằng :
a) 0,(43) + 0,(56) = 1
b) 0,(333) . 3 = 1
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
3. Tìm a,b,c
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = -20
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
Cho tỉ lệ thức \(\frac{a}{b}\) = \(\frac{b}{c}\) . Hãy chứng tỏ rằng : \(\frac{a^2+2b^2}{b^2+2c^2}\) = \(\frac{a}{c}\)
Đặt :
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\b=ck\end{cases}\)\(\Rightarrow\begin{cases}a=ck^2\\b=ck\end{cases}\)
Thay vào ta có :
\(\frac{a^2+2b^2}{b^2+2c^2}=\frac{c^2k^4+4c^2k^2}{c^2k^2+4c^2}=\frac{c^2k^2\left(k^2+4\right)}{c^2\left(k^2+4\right)}=k^2=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+2b^2}{b^2+2c^2}=\frac{a}{c}\)
Cho tam giacs ABC có 3 góc nhọn. GỌi a,b,c lần lượt là các cạnh đối diện với góc A,B,C. Chứng tỏ rằng \(^2b+c^2>a\)
Cho các số thực a,b,c thỏa mãn ( b+2c ) ( c+2a ) ( c+2b ) khác 0 và \(\frac{a}{b+2c}\)=\(\frac{b}{c+2a}\)=\(\frac{c}{a+2b}\). Chứng minh rằng a=b=c
cho \(\frac{a}{b}=\frac{c}{d}\). chứng tỏ
\(\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\)
giúp mik với
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{2a+c}{2b+d}=\frac{2bk+dk}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\)
\(\frac{2a-c}{2b-d}=\frac{2bk-dk}{2b-d}=\frac{k\left(2b-d\right)}{2b-d}=k\)
\(\Rightarrow\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\)
Cho \(a^3+b^3+c^3=0\).Chứng tỏ rằng\(a^3b^3+2b^3c^3+3a^3c^3\le0\)
Ta có:
a3b3 + 2b3c3 + 3a3c3
=a3b3 -b3c3 + 3b3c3 + 3a3c3
= b3 ( a3 - c3 ) +3c3 (b3 + a3 )
= b3 (-b3 - 2c3 ) +3c3 ( -c3)
= -b6 - 2 b3 c3 - 3 c6 \(\le\)0
Cho các số thực a,b,c thỏa mãn ( b+2c ) ( c+2a ) ( c+2b ) khác 0 và \(\frac{a}{b+2c}\)= \(\frac{b}{c+2a}\)= \(\frac{c}{a+2b}\). Chứng minh rằng a=b=c
xin lỗi các bạn . Mình nhầm đề . Các bạn ko cần trả lời câu hỏi này đâu
Mình xin lỗi . Đây đúng là đề bài thật . Các bạn làm giúp mình với nha !! Thành thật xin lỗi
cho x=\(\frac{a}{b}\); y=\(\frac{c}{b}\); z=\(\frac{a+c}{2b}\)với b>0. Biết x<y. Hãy chứng tỏ x<z<y
HELP ME!!!!!!
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu