Cho a,b,c > 0 và \(n\ge2\)(n tự nhiên).CMR:
\(\sqrt[n]{\frac{a}{b+c}}+\sqrt[n]{\frac{b}{c+a}}+\sqrt[n]{\frac{c}{a+b}}>\frac{n}{n-1}\sqrt[n]{n-1}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
1.cho a,b,c>0 và \(a^2+b^2+c^2=1\). tìm min \(P=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)
2. cho \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\)CMR \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\)với n là số tự nhiên lẻ
3.cho \(0\le a,b,c\le1\)CMR \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3abc\)
4.cho \(0\le a,b,c\le1\)tìm max \(p=x\sqrt{1-y^2}+y\sqrt{1-x^2}+\frac{1}{\sqrt{3}}\left(x+y\right)\)
Các bạn giúp mình nha, mặc dù mình biết là không ai trả lời câu hỏi của mình, nhưng mình vẫn tin ở các bạn sẽ giúp mình
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
a) Cho a,b>0 và c khác 0
thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
CMR:\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
b)Tìm tích của các số tự nhiên n biết n là số có hai chữ số và n chia hết cho tích của các chữ số của nó
MONG CÁC BẠN ZẢI NHANH ZÚP
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)
ten ten ten
1. Cho a,b,c>0 và a+b+c=1 CMR sigma\(\frac{a-bc}{a+bc}\le\frac{3}{2}\)
2. cho a,b,c>0 va abc=1 CMR sigma\(\frac{1}{a\left(b+1\right)}\ge\frac{3}{2}\)
3.(i think it is difficult for you)
ch a,b,c>0 CMR sigma\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}\ge\frac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
4. CMR với mọi n là số tự nhiên lớn hơn 1 thì \(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}< 1\)
bài 1
<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)
sử dụng tiếp cauchy sharws
Bài 2: đặt a=x/y, b=y/x, c=z/x
Các bạn giúp mình câu về BĐT cauchy này với. Cho a,b,c>0 và a+b+c=6 CMR \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Các bạn giúp mình mấy câu BĐT Cauchy này với
1. cho a,b,c>0 và a+b+c=6 CMR \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
2.cho a,b,c>0 CMR \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ac}{\sqrt{b^2+3}}\le\frac{3}{2}\)
3. cho a,b,c >0 CMR \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)
mấy câu này khá là khó, giúp mình với
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
2. Chuẩn hóa \(a+b+c=3\)
=> \(ab+bc+ac\le3\)
=> \(c^2+3\ge\left(a+c\right)\left(b+c\right)\)
=> \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
=> \(VT\le\Sigma\frac{1}{2}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
1. Ta có \(\sqrt{b^3+1}=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{1}{2}\left(b^2+2\right)\)
=> \(\frac{a}{\sqrt{b^3+1}}\ge\frac{2a}{2+b^2}=\frac{2a+ab^2-ab^2}{2+b^2}=a-\frac{2ab^2}{b^2+b^2+4}\)
Lại có \(b^2+b^2+4\ge3\sqrt[3]{b^4.4}\)
=> \(\frac{a}{\sqrt{b^3+1}}\ge a-\frac{2ab^2}{3\sqrt[3]{b^4.4}}=a-\frac{2}{3}.a.\sqrt[3]{\frac{b^2}{4}}\)
Mà \(\sqrt[3]{\frac{b^2}{4}.1}=\sqrt[3]{\frac{b}{2}.\frac{b}{2}.1}\le\frac{1}{3}\left(b+1\right)\)
=>\(\frac{a}{\sqrt[3]{b^3+1}}\ge a-\frac{2}{3}.a.\frac{1}{3}\left(b+1\right)=\frac{7a}{9}-\frac{2}{9}ab\)
Khi đó
\(VT\ge\frac{7}{9}\left(a+b+c\right)-\frac{2}{9}\left(ab+bc+ac\right)\)
Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=12\)
=> \(VT\ge\frac{7}{9}.6-\frac{2}{9}.12=2\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=2
Cho a, b, c > 0 thỏa mãn a + b = 2c. CMR \(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Qui đồng chứng minh tương đương là ra
\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)
\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Cách khác.
Đặt \(x=\frac{1}{\sqrt{a}+\sqrt{c}};y=\frac{1}{\sqrt{b}+\sqrt{c}};z=\frac{1}{\sqrt{a}+\sqrt{b}}\)(*)
Cần chứng minh \(x+y=2z\)
(*)\(\Leftrightarrow\frac{1}{x}=\sqrt{a}+\sqrt{c};\frac{1}{y}=\sqrt{b}+\sqrt{c};\frac{1}{z}=\sqrt{a}+\sqrt{b}\)
Cộng vế :
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{x}+\sqrt{a}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow a=\frac{1}{4}\cdot\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2\)
Tương tự :
\(b=\frac{1}{4}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2\)
\(c=\frac{1}{4}\cdot\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\)
Theo giả thiết : \(a+b=2c\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{4}\cdot\left[\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2+\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\right]\)
\(\Leftrightarrow\frac{4}{xy}-\frac{2}{yz}-\frac{2}{zx}=0\)
\(\Leftrightarrow\frac{2}{xy}=\frac{1}{yz}+\frac{1}{zx}\)
\(\Leftrightarrow\frac{2z}{xyz}=\frac{x+y}{xyz}\)
\(\Leftrightarrow2z=x+y\) ( đpcm )
Cho a, b, c là các số thực không âm thỏa mãn điều kiện ab+bc+ca>0. CMR: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)
Lời giải:
Đặt biểu thức vế trái là $P$
Hiển nhiên $a,b,c$ không thể cùng đồng thời bằng $0$
Nếu trong 3 số $a,b,c$ có 2 số bằng $0$ thì $ab+bc+ac=0$ (trái giả thiết)
Nếu trong 3 số $a,b,c$ có 1 số bằng $0$. Giả sử đó là $a$
Khi đó:
$P=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}\geq 2$ theo BĐT AM-GM $(*)$
Nếu cả 3 số $a,b,c$ đều lớn hơn $0$
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}=\frac{b+c}{a}.1\left(\frac{\frac{b+c}{a}+1}{2}\right)^2\leq \left(\frac{a+b+c}{2a}\right)^2\Rightarrow \sqrt{\frac{b+c}{a}}\leq \frac{a+b+c}{2a}\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Hoàn toàn tương tự:
\(\sqrt{\frac{b}{a+c}}\geq \frac{2b}{a+b+c}; \sqrt{\frac{c}{a+b}}\geq \frac{2c}{a+b+c}\)
Cộng theo vế thì $P\geq 2 (**)$
Từ $(*); (**)\Rightarrow$ đpcm.
Câu 1 ; a, Rút gọn A=\(\frac{\sqrt{5+\sqrt{5}-2\sqrt{2}\sqrt{3+\sqrt{5}}}}{\sqrt{3-\sqrt{5}}+\sqrt{2}}\)
b, cho \(\frac{a}{b+c}\frac{b}{a+c}\frac{c}{a+b}=1\) tính P=\(a^2+b^2+c^2+\frac{a^3}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Câu 2 ; a, cho các số nguyên dương a,b ,c thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) CM a+b+c chia hết cho 54
b, giải pt x2+7x +14-2\(\sqrt{x-4}\)=0
Câu 3 ; cho a,b,c >0 thỏa mãn \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge2\) CMR abc\(\ge\) 8
1.
\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)
\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)
b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))
2.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ
\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn
\(\Rightarrow a+b+c\) chẵn
- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)
Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)
- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)
Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3
\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)
- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư
\(\Rightarrow\) \(a+b+c⋮̸3\)
Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn
Vậy \(a+b+c⋮54\)
2b
Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý
Pt như nguyên mẫu được biến đổi thành:
\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)
Hiển nhiên vô nghiệm
3.
\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\ge8\)