Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trung le quang

Các bạn giúp mình mấy câu BĐT Cauchy này với

1. cho a,b,c>0 và a+b+c=6 CMR \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)

2.cho a,b,c>0 CMR \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ac}{\sqrt{b^2+3}}\le\frac{3}{2}\)

3. cho a,b,c >0 CMR \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)

mấy câu này khá là khó, giúp mình với

Trần Phúc Khang
22 tháng 7 2019 lúc 12:54

3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có

\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)

TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)

=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)

Dấu bằng xảy ra khi a=b=c

Trần Phúc Khang
22 tháng 7 2019 lúc 20:34

2. Chuẩn hóa \(a+b+c=3\)

=> \(ab+bc+ac\le3\)

=> \(c^2+3\ge\left(a+c\right)\left(b+c\right)\)

=> \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

=> \(VT\le\Sigma\frac{1}{2}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Trần Phúc Khang
23 tháng 7 2019 lúc 7:32

1. Ta có \(\sqrt{b^3+1}=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{1}{2}\left(b^2+2\right)\)

=> \(\frac{a}{\sqrt{b^3+1}}\ge\frac{2a}{2+b^2}=\frac{2a+ab^2-ab^2}{2+b^2}=a-\frac{2ab^2}{b^2+b^2+4}\)

Lại có \(b^2+b^2+4\ge3\sqrt[3]{b^4.4}\)

=> \(\frac{a}{\sqrt{b^3+1}}\ge a-\frac{2ab^2}{3\sqrt[3]{b^4.4}}=a-\frac{2}{3}.a.\sqrt[3]{\frac{b^2}{4}}\)

\(\sqrt[3]{\frac{b^2}{4}.1}=\sqrt[3]{\frac{b}{2}.\frac{b}{2}.1}\le\frac{1}{3}\left(b+1\right)\)

=>\(\frac{a}{\sqrt[3]{b^3+1}}\ge a-\frac{2}{3}.a.\frac{1}{3}\left(b+1\right)=\frac{7a}{9}-\frac{2}{9}ab\)

Khi đó

\(VT\ge\frac{7}{9}\left(a+b+c\right)-\frac{2}{9}\left(ab+bc+ac\right)\)

\(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=12\)

=> \(VT\ge\frac{7}{9}.6-\frac{2}{9}.12=2\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=2


Các câu hỏi tương tự
Hello-Tôi yêu các bạn
Xem chi tiết
bach nhac lam
Xem chi tiết
trung le quang
Xem chi tiết
bach nhac lam
Xem chi tiết
trung le quang
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết