Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Niii

Câu 1 ; a, Rút gọn A=\(\frac{\sqrt{5+\sqrt{5}-2\sqrt{2}\sqrt{3+\sqrt{5}}}}{\sqrt{3-\sqrt{5}}+\sqrt{2}}\)

b, cho \(\frac{a}{b+c}\frac{b}{a+c}\frac{c}{a+b}=1\) tính P=\(a^2+b^2+c^2+\frac{a^3}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

Câu 2 ; a, cho các số nguyên dương a,b ,c thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) CM a+b+c chia hết cho 54

b, giải pt x2+7x +14-2\(\sqrt{x-4}\)=0

Câu 3 ; cho a,b,c >0 thỏa mãn \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge2\) CMR abc\(\ge\) 8

Nguyễn Việt Lâm
12 tháng 10 2020 lúc 19:38

1.

\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)

\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)

b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))

2.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ

\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn

\(\Rightarrow a+b+c\) chẵn

- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)

Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)

- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)

Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3

\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)

- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư

\(\Rightarrow\) \(a+b+c⋮̸3\)

Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn

Vậy \(a+b+c⋮54\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 19:38

2b

Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý

Pt như nguyên mẫu được biến đổi thành:

\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)

Hiển nhiên vô nghiệm

3.

\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\ge8\)


Các câu hỏi tương tự
Nguyễn Minh Nguyệt
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Khánh Ngọc
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
Sakura
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết
bach nhac lam
Xem chi tiết