Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Phương
Xem chi tiết
Linh Nguyen
Xem chi tiết
Hồng Phúc
20 tháng 10 2020 lúc 2:03

2.

a, \(P=\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left[\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{a-1}{\sqrt{a}-1}\right]:\frac{a-\sqrt{a}-\sqrt{a}}{\sqrt{a}-1}\)

\(=\left[\frac{a-\sqrt{a}+1}{\sqrt{a}-1}-\frac{a-1}{\sqrt{a}-1}\right]:\frac{a-2\sqrt{a}}{\sqrt{a}-1}\)

\(=\frac{2-\sqrt{a}}{\sqrt{a}-1}.\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-2\right)}=-\frac{1}{\sqrt{a}}\)

b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\Rightarrow\sqrt{a}=\sqrt{2}-1\)

Khi đó \(P=-\frac{1}{\sqrt{a}}=-\frac{1}{\sqrt{2}-1}=-\sqrt{2}-1\)

Khách vãng lai đã xóa
Hồng Phúc
20 tháng 10 2020 lúc 1:21

1.

a, \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(=a-\sqrt{a}\)

b, \(A=a-\sqrt{a}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(\Rightarrow MinA=-\frac{1}{4}\Leftrightarrow x=\frac{1}{4}\)

Khách vãng lai đã xóa
Hrgwggwuch sv5
Xem chi tiết
Trần Thanh Phương
14 tháng 8 2019 lúc 11:35

a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)

b) Giống câu a ?

c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)

\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)

\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)

\(=\sqrt{ab}\)

Đinh Thị Hoàng Yến
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Phạm Thị Thùy Linh
1 tháng 8 2019 lúc 19:10

\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)

\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)

\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)

\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)

\(\Rightarrow a-2\sqrt{a}+1-2=0\)

\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)

\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)

Biển Ác Ma
1 tháng 8 2019 lúc 20:58

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)

\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)

\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)

\(=\frac{1-a}{\sqrt{a}}\)

Dragon Boy
Xem chi tiết
soyeon_Tiểubàng giải
Xem chi tiết
Trần Việt Linh
16 tháng 10 2016 lúc 23:12

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

Lightning Farron
16 tháng 10 2016 lúc 23:13

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

Eng Ther
Xem chi tiết
Akai Haruma
2 tháng 4 2020 lúc 20:37

Bài 1:

ĐK: $a\geq 0; a\neq 1$

a)

\(P=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)\)

\(=(\sqrt{a}+1)^2(\sqrt{a}-1)^2=(a-1)^2\)

b) \(P< 7-4\sqrt{3}\)

\(\Leftrightarrow (a-1)^2< (2-\sqrt{3})^2\)

\(\Leftrightarrow \sqrt{3}-2< a-1< 2-\sqrt{3}\)

\(\Leftrightarrow \sqrt{3}-1< a< 3-\sqrt{3}\)

Vậy $\sqrt{3}-1< a< 3-\sqrt{3}$ và $a\neq 1$

Khách vãng lai đã xóa
Akai Haruma
2 tháng 4 2020 lúc 20:41

Bài 2:

a)

\(A=\frac{2}{a-\sqrt{a}}.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}=\frac{2(\sqrt{a}-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+1)}\)

b)

Xét hiệu \(A-1=\frac{2\sqrt{a}-2-a-\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}\)

Thấy rằng: \(a-\sqrt{a}+2=(\sqrt{a}-\frac{1}{2})^2+\frac{7}{4}>0; \sqrt{a}(\sqrt{a}+1)>0 \) với mọi $a>0; a\neq 1$ nên:

\(A-1=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}<0\Rightarrow A< 1\)

Khách vãng lai đã xóa
Hoàng Linh Chi
Xem chi tiết
Yuzu
3 tháng 7 2019 lúc 12:01

Mk có làm tắt vài chỗ (vì lười .-.) , có gì ko hiểu cmt cho mk biết nha

1.

\(P=\left(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{a+\sqrt{a}}{a-1}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\\ =\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}\right):\left(\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ \frac{1}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\\ =\frac{\sqrt{a}+1}{2\sqrt{a}}\)

2. Mk giải chưa ra, sorry nha :<)

Nguyễn Minh Anh
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 8 2019 lúc 14:23

\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)

\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)

\(=\frac{2a^2-2a}{a^2-a}\)

\(=2\)( 1 )

\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)

\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )

Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)

Câu b,c em chịu:((

P/S:e ko bt đúng hay sai đâu ạ

Bui Huyen
1 tháng 8 2019 lúc 15:14

Mk giải nốt phần còn lại nha

sai thì thông cảm

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)

\(\Leftrightarrow a\ne1;a\ge0\)