Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Uyênn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2018 lúc 7:32

biii
Xem chi tiết
biii
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 22:42

\(\left(m^2-1\right)x-8m+9-m^2\ge0\)

\(\Leftrightarrow\left(m^2-8m-1\right)x\ge m^2-9\)

- Với \(m=4+\sqrt{17}\) ko thỏa mãn

- Với \(m=4-\sqrt{17}\) thỏa mãn

- Với \(m\ne4\pm\sqrt{17}\)

Pt nghiệm đúng với mọi \(x\ge0\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-8m-1>0\\\dfrac{m^2-9}{m^2-8m-1}\le0\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-1>0\\m^2-9\le0\end{matrix}\right.\)

\(\Leftrightarrow-3\le m< 4-\sqrt{17}\)

Vậy \(-3\le m\le4-\sqrt{17}\)

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 5 2021 lúc 19:37

\(\Leftrightarrow mx-m^2\ge x-1\Leftrightarrow\left(m-1\right)x\ge m^2-1\)

- Với \(m=1\) tập nghiệm của BPT là R (ktm)

- Với \(m>1\) \(\Rightarrow m-1>0\Rightarrow x\ge\dfrac{m^2-1}{m-1}=m+1\) hay \([m+1;+\infty)\) (ktm)

- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le m+1\) hay \((-\infty;m+1]\) có vẻ giống?

Nhẩm trắc nghiệm thì \(ax>b\) có tập nghiệm chứa dương vô cùng khi a>0, có tập nghiệm chứa âm vô cùng khi a<0

\(ax< b\) thì ngược lại

Nguyễn Việt Lâm
22 tháng 5 2021 lúc 17:30

Đầu tiên lấy A là điểm gốc

Cho \(k=0\) ta được góc \(\dfrac{\pi}{4}\) nghĩa là 45 độ, lấy thước đo góc đo 1 góc tạo với OA góc 45 độ, cắt đường tròn lượng giác tại B. 

Vậy B là điểm biểu diễn đầu tiên của \(\dfrac{\pi}{4}+\dfrac{k\pi}{2}\) (A ko phải đâu nhé)

Tiếp theo, cho \(k=1\) ta được 1 góc mới bằng \(\dfrac{\pi}{4}+\dfrac{\pi}{2}\) hay \(45^0+90^0\), nghĩa là góc mới này so với B sẽ quay thêm 1 góc 90 độ

Do đó, từ OB đo tiếp 1 góc vuông 90 độ, cắt đường tròn tại C.

Vậy C là điểm biểu diễn thứ 2

Tiếp tục cho \(k=2\) được góc \(45^0+180^0=\left(45^0+90^0\right)+90^0\) nghĩa là so với C sẽ quay thêm 1 góc 90 độ

Đo 1 góc 90 từ OC cắt đường tròn tại D

Vậy D là điểm thứ 3

Từ OD đo tiếp 1 góc 90 độ nữa (k=3)

Được điểm E là điểm thứ 4

Từ OE đo tiếp 1 góc 90 độ nữa, cắt đường tròn tại F

Nhưng để ý rằng F lúc này sẽ trùng B.

Ta chỉ cần đo đến khi nào trùng thế này là được

Vậy có 4 điểm biểu diễn là B, C, D, E 

\(\dfrac{\pi}{4}+k.\dfrac{\pi}{2}\)  nghĩa là góc làm gốc đầu tiên sẽ là 45 độ so với OA, và mỗi góc về sau sẽ thêm 1 đại lượng \(\dfrac{\pi}{2}\) hay 90 độ so với góc liền trước nó. Cứ xác định như vậy đến khi nào có 2 điểm trùng nhau thì thôi

undefined

Hoaa
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 7 2021 lúc 16:17

Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)

Đặt \(t=\left|x-1\right|;t\ge0\)

Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)

Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)

Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)

\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)

Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)

Vậy...

 

Tâm Cao
Xem chi tiết
Đỗ Thanh Hải
13 tháng 3 2021 lúc 18:43

Bpt \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=\left(m+2\right)^2-\left(m-1\right)\left(2m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\-m^2+4m+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left[{}\begin{matrix}m< 2-\sqrt{10}\\m>\sqrt{2+\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< 2-\sqrt{10}}\)

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 14:47

- Với \(m=\pm1\) không thỏa mãn

- Với \(m\ne\pm1\) ta có: 

\(\Delta'=16m^2-\left(m^2-1\right)\left(9-m^2\right)=\left(m^2+3\right)^2>0\) ; \(\forall m\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(x\ge0\) khi và chỉ khi: \(\left\{{}\begin{matrix}m^2-1>0\\x_1< x_2\le0\end{matrix}\right.\) (pt hệ số a dương đồng thời có 2 nghiệm ko dương)

\(\Leftrightarrow\left\{{}\begin{matrix}a=m^2-1>0\\x_1+x_2=\dfrac{8m}{m^2-1}< 0\\x_1x_2=\dfrac{9-m^2}{m^2-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow-3\le m< -1\)

(Nếu \(\Delta\) không luôn dương với mọi m, ví dụ dạng \(\Delta=m^2-3m+2\) chẳng hạn thì còn 1 TH thỏa mãn nữa là \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\))

Thảo Vi
Xem chi tiết