Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mai pham
Xem chi tiết
Dương Thị Huyền Trang
Xem chi tiết
Cô Hoàng Huyền
24 tháng 1 2018 lúc 15:36

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)

le diep
Xem chi tiết
Ngocmai
Xem chi tiết
Nguyễn Thế Mãnh
Xem chi tiết
Thanh Thúy Trần
Xem chi tiết
Hanako-kun
15 tháng 3 2020 lúc 21:13

ĐK: \(-x^2+2x+\frac{1}{2}-m\ge0\)

\(pt\Leftrightarrow\left[{}\begin{matrix}4x-2m-\frac{1}{2}>-x^2+2x+\frac{1}{2}-m\\4x-2m-\frac{1}{2}< x^2-2x-\frac{1}{2}+m\end{matrix}\right.\)

Xét từng bpt một nhé:

\(x^2+2x-1-m>0\) (1)

Để (1) đúng với mọi x thì \(\Delta< 0\Leftrightarrow1+1+m< 0\Leftrightarrow m< -2\)

\(x^2-6x+3m>0\) (2)

Để (2) đúng với mọi x thì \(\Delta< 0\Leftrightarrow9-3m< 0\Leftrightarrow m>3\)

\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

\(\Rightarrow S=\left(-2019;-2\right)\cup\left(3;2019\right)\)

Tự đếm xem có bao nhiêu phần tử nha cậu :))

Khách vãng lai đã xóa
hello sunshine
Xem chi tiết
Hoàng Yến
6 tháng 4 2020 lúc 11:15

\(7.\) Xét mẫu thức \(\left(x^2+1\right)\left(x^2+4x+5\right)\), ta có:

\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\) Luôn đúng với mọi giá trị \(x\)

\(x^2+4x+5\\ hayx^2+4x+4+1=\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)

\(\Rightarrow\) Luôn đúng với mọi giá trị \(x\)

Vậy biểu thức \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\) luôn xác định với mọi giá trị \(x\)

Khách vãng lai đã xóa
Nghịch Dư Thủy
Xem chi tiết
Ngoc Diep
Xem chi tiết
Nguyễn Thị Anh
25 tháng 6 2016 lúc 14:21

Hỏi đáp Toán

Nguyễn Thị Anh
25 tháng 6 2016 lúc 13:29

Hỏi đáp Toán