Tìm m để \(\left|4x-2m-\frac{1}{2}\right|>-x^2+2x+\frac{1}{2}-m\) với mọi số thực x
Xét 2 phương trình ẩn x, tham số m :
4x = 2008 - mx \(\left(1\right)\) và \(\frac{\left(m+1\right)x-1}{2}-\frac{x+4}{3}=\frac{1-2m^2x}{6}\left(2\right)\)
Chứng minh : với mọi giá trị của m ít nhất mooyj trong 2 phương trình rên có nghiệm.
giúp minh với!!
bài 1: giải phương trình
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
Bài 2: tìm giá trị của tham số m để phương trình sau vô nghiệm:\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
Tìm m để\(|4x-2m-\frac{1}{2}|>-x^2+2x+\frac{1}{2}-m\) với mọi số thực x
A.-2<m<3 B.m>3/2 C. m>3 D.m<3/2
giải hộ minh nha <3
Xét 2 pt ẩn x, tham số m :
\(4x+2008-mx\left(1\right)\)và\(\frac{\left(m+1\right)x-1}{2}-\frac{x+4}{3}=\frac{1-2m^2x}{6}\left(2\right)\)
1) Xét dấu của biểu thức \(f\left(x\right)=\frac{\left(x-1\right)^5\left(2x+5\right)^{2014}}{x^9\left(-x+3\right)^{2015}}\)
2) Chứng minh rằng phương trình \(\left(m-1\right)x^2+\left(3m-2\right)x+3-2m=0\) luôn có nghiệm với mọi giá trị thực của tham số m
3) Xác định tham số m để hàm số \(y=\sqrt{\frac{-2016x^4-1}{\left(m+1\right)x^2+2\left(m+1\right)x-m-3}}\) có tập xác định D = R
Gọi S là tập hợp các giá trị nguyên m nằm trong khoảng (-2019; 2019) để bất phương trình \(\left|4x-2m-\frac{1}{2}\right|>-x^2+2x+\frac{1}{2}-m\) đúng với mọi số thực x. Tìm số các phần tử tập hợp S.
Mọi người giúp mình với vì ngày mai mình cần nộp để lấy điểm ạ. Cảm ơn sự giúp đỡ của mọi người rất nhiều ạ!
ĐK: \(-x^2+2x+\frac{1}{2}-m\ge0\)
\(pt\Leftrightarrow\left[{}\begin{matrix}4x-2m-\frac{1}{2}>-x^2+2x+\frac{1}{2}-m\\4x-2m-\frac{1}{2}< x^2-2x-\frac{1}{2}+m\end{matrix}\right.\)
Xét từng bpt một nhé:
\(x^2+2x-1-m>0\) (1)
Để (1) đúng với mọi x thì \(\Delta< 0\Leftrightarrow1+1+m< 0\Leftrightarrow m< -2\)
\(x^2-6x+3m>0\) (2)
Để (2) đúng với mọi x thì \(\Delta< 0\Leftrightarrow9-3m< 0\Leftrightarrow m>3\)
\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
\(\Rightarrow S=\left(-2019;-2\right)\cup\left(3;2019\right)\)
Tự đếm xem có bao nhiêu phần tử nha cậu :))
7. Chứng minh biểu thức sau xác định với mọi giá trị của x:
A = \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\)
10. Cho phương trình ẩn y:
\(\frac{m}{y+m}+\frac{y}{y+2m}=\frac{3}{\left(y+m\right)\left(y+2m\right)}+1\)
a) Giải phương trình với m = 1
b) Tìm các giá trị của tham số m để phương trình có nghiệm y = 0
\(7.\) Xét mẫu thức \(\left(x^2+1\right)\left(x^2+4x+5\right)\), ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
\(x^2+4x+5\\ hayx^2+4x+4+1=\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)
\(\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
Vậy biểu thức \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\) luôn xác định với mọi giá trị \(x\)
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
Bài 1: Giải phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\left(x+\frac{1}{9}\right)\times\left(2x-5\right)< 0\)
c) \(\left(4x-1\right)\times\left(x^2+12\right)\times\left(-x+4\right)>0\)
d) \(\frac{2x+\frac{3x-4}{5}}{15}< \frac{\frac{3-x}{2}+7x}{5}+1-x\)
Bài 2:
a) \(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm
b)\(\frac{m-4}{6m+9}\)có giá trị dương
c) CMR: \(-x^2+4x-9\le-5\)với mọi x
d) CMR: \(x^2-2x+9\ge8\)với mọi số thực x