b: 36(x-2)3/32-16x
Bài 1: Rút gọn phân thức
a) \({36 ({x-2})^3 \over 32-16x}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
Áp dụng quy tắc đổi dấu rồi rút gọn phân thức :
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
b) \(\dfrac{x^2-xy}{5y^2-5xy}\)
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{16\left(2-x\right)}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}\)\(=\dfrac{36\left(x-2\right)^3:4\left(x-2\right)}{-16\left(x-2\right):4\left(x-2\right)}\)\(=\dfrac{9\left(x-2\right)^2}{-4}\)
b) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{x\left(x-y\right)}{-5y\left(x-y\right)}\)\(=\dfrac{x}{-5y}\)
Bài 1: Rút gọn phân thức
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
b) \(\dfrac{x^2+2x+1}{x+1}\)
c) \(\dfrac{x^2-2x+1}{x^2-1}\)
d) \(\dfrac{3x^2-12x+12}{x^4-8x}\)
a)
\(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{9\left(x-2\right)^3}{8-4x}=\dfrac{9\left(x-2\right)^3}{4\left(2-x\right)}=\dfrac{9\left(x-2\right)^3}{-4\left(x-2\right)}=\dfrac{9\left(x-2\right)^2}{-4}\)
b)
\(\dfrac{x^2+2x+1}{x+1}=\dfrac{\left(x+1\right)^2}{x+1}=x+1\)
c)
\(\dfrac{x^2-2x+1}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
áp dụng quy tắc đổi dấu rút gọn phân thức :
a)\(\dfrac{45x\left(3-x\right)}{15\left(x-3\right)^3}\)
b)\(\dfrac{36\left(x-2\right)^3}{32-16x}\)
c) \(\dfrac{x^2-xy}{5y^2-5xy}\)
d) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
Lời giải:
a) \(\frac{45x(3-x)}{15(x-3)^3}=\frac{-45x(x-3)}{15(x-3)^3}=\frac{-3x}{(x-3)^2}\)
b) \(\frac{36(x-2)^3}{32-16x}=\frac{36(x-2)^3}{-16(x-2)}=\frac{-9}{4}(x-2)^2\)
c) \(\frac{x^2-xy}{5y^2-5xy}=\frac{x(x-y)}{-5y(x-y)}=\frac{x}{-5y}\)
d) \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{-(x^2-y^2)}{(x-y)^3}=\frac{-(x-y)(x+y)}{(x-y)^3}=\frac{-(x+y)}{(x-y)^2}\)
Rút gọn
a) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\frac{36\left(x-2\right)^3}{32-16x}\)
c) \(\frac{x^2+2x+1}{x+1}\)
d) \(\frac{x^2-2x+1}{x^2-1}\)
a, =x-z
b,=-9(2-x)^2/4
c,=x+1
d,=(x-1)/(x+1)
hok tốt
a) =\(\frac{x-z}{2}\)
1 . (3x-5)^2 - (x-1)^2
2 . x^2 - 7x + 10
3 . 3x^2 + 7x + 10
4 . 2x^2 - 16x - 8y^2 + 32
5. 3x^2 + xy^2 - x - y
6 . 2x^2 -2y^2 + 3x - 3y
7 . 36 - 4x^2 - 4xy - y^2
Giai hộ mình nha
bài 1 tính
a, 24 x 66 - 24 + 36 x 24
b, 29 x 173 - 29 x 72 -29
c, 1+5+10+15+...+55+60
d, 1x2+2x3+3x4 +...+18x19+19x20
bài 2 tìm x
a,106- ( x+ 7) =9
b, 2 x ( x+ 4) + 5 =65
c, (16x x -32) x 45=0
d, x+4 x x = 100 : 5
bài 2 tìm x
a,106- ( x+ 7) =9
x+7 = 106 - 9
x+7 = 107
x= 107 - 7
x=100
b, 2 x ( x+ 4) + 5 =65
2 x (x+4) = 65 - 5
2 x (x+4) = 60
x+4 = 60:2
x+4= 30
x= 30 - 4
x=26
c, (16x x -32) x 45=0
16 x X - 32 = 0: 45
16 x X - 32 =0
16 x X = 0 + 32
16 x X = 32
X= 32:16
X=2
d, x+4 x x = 100 : 5
X + 4 x X = 20
(1+4) x X = 20
5 x X = 20
X= 20:5
X=4
Bài 1:
a, 24 x 66 - 24 + 36 x 24
= 24 x (66-1+36)
= 24 x 101
= 24 x 100 + 24
= 2400+24
=2424
b, 29 x 173 - 29 x 72 - 29
= 29 x (173 - 72 -1)
= 29 x 100
= 2900
c, 1+5+10+15+...+55+60
= (5+60) x 6 + 1 (có 6 cặp)
= 65 x 6 + 1
= 390 +1 =391
d, D= 1 x 2 + 2 x 3 + 3 x 4 +...+18 x 19 + 19 x 20
3D= 1 x 2 x 3+ 2 x 3 x (4-1) + 3 x 4 x (5-2) +...+ 18 x 19 x (20 - 17) + 19 x 20 x (21-18)
3D= 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 +.... + 19 x 20 x 21 - 18 x 19 x 20
3D= 19 x 20 x 21 =7980
=> D= 7980:3=2660
Giải phương trình sau
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)
\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\))
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=9+2\)
\(\Leftrightarrow x=11\left(tm\right)\)