11.2. Tìm m để pt: x2 - 5x + m - 6 = 0 có 2 nghiệm phân biệt: x1<6<x2.
Xin cảm ơn ạ!!
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho pt x2+2(m-2)+m2-4m= 0
a) CM pt luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm phân biệt thỏa x1, x2 thỏa mãn 3/x1+ x2 = 3/x2+x1
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
ho pt: x2 + x + m - 5 =0 (1)
Tìm m để pt(1) có 2 nghiệm phân biệt x1 khác 0; x2 khác 0 thỏa mãn:
6−m−x1x2 +6−m−x2x1
x^2 - (m-2)*x -6 = 0. Tìm m để pt có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 + x2 - 3 x1x2=0
Giúp mk vs
\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)
Thế vào đề bài:
\(m-2-3\left(-6\right)=0\)
\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)
\(x^2-\left(m-2\right)x-6=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=\left[-\left(m-2\right)\right]^2-4.\left(-6\right)\)
\(=m^2-4m+4+24=m^2-4m+28\)
\(=\left(m-2\right)^2+24\)
Thấy \(\left(m-2\right)^2\ge0\)\(\Rightarrow\left(m-2\right)^2+24>0\forall m\)
Vậy phương trình luân có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng \(Vi-ét \) ta có :
\(S=x_1+x_2=\dfrac{-b}{a}=m-2\)
\(P=x_1.x_2=\dfrac{c}{a}=-6\)
Ta có \(x_1+x_2-3.x_1.x_2=0\)
\(\Leftrightarrow m-2-3.\left(-6\right)=0\Rightarrow m=-16\)
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
cho pt x2 - 4mx + 4m2 - m +2 =0
tìm m để pt có hai nghiệm phân biệt x1, x2 thỏa mãn |x1-x2| = 2
Δ=(-4m)^2-4(4m^2-m+2)
=16m^2-16m^2+4m-8=4m-8
Để phương trình có hai nghiệm phân biệt thì 4m-8>0
=>m>2
|x1-x2|=2
=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)
=>\(\sqrt{16m^2-16m^2+4m-8}=2\)
=>\(\sqrt{4m-8}=2\)
=>4m-8=4
=>4m=12
=>m=3(nhận)
cho pt -x^2+3x+m-1=0
a,tìm m để pt có 2 nghiệm dương phân biệt
b,tìm m để pt có 2 nghiệm x1,x2 tm x1^3+x2^3=18
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
Cho pt ẩn x : x2 - 5x + m - 2 = 0 (1)
a) Giải pt (1) khi m = -4
b) Tìm m để pt có 2 nghiệm dương phân biệt x1 , x2 thoả mãn hệ thức:
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
b: \(\Delta=\left(-5\right)^2-4\left(m-2\right)=25-4m+8=33-4m\)
Theo viet:
\(x_1+x_2=-\dfrac{b}{a}=5\)
\(x_1x_2=\dfrac{c}{a}=m-2\)
Để pt có 2 nghiệm dương phân biệt:
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}33-4m>0\\5>0\left(TM\right)\\m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\x>2\end{matrix}\right.\Leftrightarrow m=2< m< \dfrac{33}{4}\)
Vậy \(2< m< \dfrac{33}{4}\) thì pt có 2 nghiệm dương phân biệt.
Theo đầu bài: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)
\(\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=\dfrac{3}{2}\left(\sqrt{x_1x_2}\right)\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\dfrac{9}{4}x_1x_2\)
\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=\dfrac{9}{4}x_1x_2\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=\dfrac{9}{4}x_1x_2\)
\(\Leftrightarrow5+2\sqrt{x_1x_2}=\dfrac{9}{4}\left(m-2\right)\)
\(\Leftrightarrow\dfrac{9}{4}\left(m-2\right)-2\sqrt{m-2}-5=0\)
Đặt \(\sqrt{m-2}=t\Rightarrow m-2=t^2\)
\(\Rightarrow\dfrac{9}{4}t^2-2t-5=0\)
\(\Leftrightarrow\dfrac{9}{4}t^2-2+\left(-5\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(9t+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\9t+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=2\left(TM\right)\\t=-\dfrac{10}{9}\left(\text{loại}\right)\end{matrix}\right.\)
Trả ẩn:
\(\sqrt{m-2}=2\)
\(\Rightarrow m-2=4\)
\(\Rightarrow m=6\)
Vậy m = 6 thì x1 , x2 thoả mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=\dfrac{3}{2}\).
cho pt x^2-(2m+5)x-2m-6=0 tìm m để pt có 2 nghiệm phân biệt thỏa mãn |x1|+|x2|=7
Δ=(2m+5)^2-4(-2m-6)
=4m^2+20m+25+8m+24
=4m^2+28m+49
=(2m+7)^2>=0
Để phương trình có hai nghiệm phân biệt thì 2m+7<>0
=>m<>-7/2
|x1|+|x2|=7
=>x1^2+x2^2+2|x1x2|=49
=>(x1+x2)^2-2x1x2+2|x1x2|=49
=>(2m+5)^2-2(-2m-6)+2|2m+6|=49
=>4m^2+20m+25+4m+12+2|2m+6|=49
=>4m^2+24m-12+4|m+3|=0
TH1: m>=-3
=>4m^2+24m-12+4m+12=0
=>4m^2+28m=0
=>m=0(nhận) hoặc m=-7(loại)
TH2: m<-3
=>4m^2+24m-12-4m-12=0
=>4m^2+20m-24=0
=>m^2+5m-6=0
=>m=-6(nhận) hoặc m=-1(loại)
Cho pt x X^2 +3x +m=0 . tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa x2=2x1
PT có 2 nghiệm phân biệt `<=> \Delta>0`
`<=>3^2-4m>0`
`<=>m<9/4`
Viet:
`x_1+x_2=-3` (1)
`x_1x_2=m` (2)
Theo đề: `x_2=2x_1 <=> 2x_1-x_2=0` (3)
Từ (1) và (3) ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-3\\2x_1-x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-2\end{matrix}\right.\)
Thay vào (2): `(-1).(-2) = m <=> m=2`