cho x,y là các số không âm t/m x^3+y^3=2.C/m x^2+y^2 lớn hơn hoặc bằng 2
Cho x,y là các số thực không âm thỏa mãn x+y lớn hơn hoặc bằng 1 .
Chừng minh rằng x2y2(x2+y2) bé hơn hoặc băng 1/32
cho các số thực x,y thỏa mãn điều kiện x lớn hơn hoặc bằng 0,y lớn hơn hoặc bằng 0 , x+y=1
CMR x/y+1 +y/x+1 lớn hơn 2/3
Cho x, y là các số thực không âm thỏa mãn:
x^2-2xy+x-2y nhỏ hơn hoặc bằng 0.
Tìm GTLN của M=x^2-5y^2+3x
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.
1,Cho x,y là số thực dương , x lớn hơn hoặc bằng 3y. Tìm GTNN của B=\(\frac{x^3-y}{x^2y}\)
2, Cho x,y là số thực dương, x lớn hơn hoặc bằng 2y.Tìm GTNN của B=\(\frac{x^3-2y^2+2x^2y}{x^2y}\)
Cho x,y là các số thực không âm thỏa mãn: x^2-2xy+x-2y nhỏ hơn hoặc bằng 0.Tính GTLN của M = x^2-5y^2+3x
tính giùm mình đi
\(x^2-2xy+x-2y\ge0\)
\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)
\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )
\(\Leftrightarrow0\le y\le\frac{x}{2}\)
\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )
\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)
Vậy Mmax=9 <=> x=6, y =3
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Bài 1: Cho 2 số x,y lớn hơn hoặc bằng 0 ; xy=100. Tìm Min 2x+3y.
Bài 2: Cho 2 số x,y lớn hơn hoặc bằng 0 ; 3x+4y=24. Tìm Max xy.
Đề bài là thế này đúng không bạn:
Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)
Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)
P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)