Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thanh Thưởng
Xem chi tiết
Trần Thanh Hà
Xem chi tiết
Hoàng Thị Hải Linh
Xem chi tiết
Đinh Thùy Linh
2 tháng 7 2016 lúc 23:16

Từ \(x^2-2xy+x-2y\le0.\)

\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)

Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\) 

Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)

Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.

minh huong
Xem chi tiết
Nguyễn Đình Toàn
Xem chi tiết
Thắng Nguyễn
3 tháng 7 2016 lúc 12:51

\(x^2-2xy+x-2y\ge0\)

\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)

\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )

\(\Leftrightarrow0\le y\le\frac{x}{2}\)

\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )

\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)

Vậy Mmax=9 <=> x=6, y =3

Lê vsbzhsjskskskssm
Xem chi tiết
Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Lê Nhật Đăng
Xem chi tiết
Hải Đăng
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:06

Đề bài là thế này đúng không bạn:

Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)

Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)

P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)

Hải Đăng
29 tháng 1 2021 lúc 21:54

Tính giá trị lớn nhất