-3x-1=2x+29
tìm \(x\) biết:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
hay x=-2
7-(2x-1/3)^2=3
(2x+1/3)^2-3/8=1/8
12:[29-(x-2/3)^2]=3
(3x-1/2)^3+8/3=29/9-14/27
2(2x-1/3)^2+4/3=5/6+13/18
Tìm X
4x-3/x-5+29/3
2x-1/5-3x=2
Tìm
Min A= 3x^2+2x+7/x^2+2x+3
Max B= 2x^2-16x+29/x^2-6x+10
Min C = 6x^2-14x+29/x^2-2x+5
Max D = 5x^2+2x+2/x^2+x+1
Bài 1: Khai triển các hằng đẳng thức.
1,(x+1)2
2,(2x+1)2
3, (2x+y)2
4, (2x+3)2
5, ( 3x+2y)2
6, (2x2+1)2
7, (x3+1)2
8, (x2+y3)2
9, ( x2+2y2)2
10, (1/2x+1/3y)2
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
Tìm x biết
a). 3x-4/2x+5=3x+7/2x-20
b). 10x-5/7x+2=50x+10/35x-29
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)
1 tìm x biết :
a, 3x 22x-1=24
b, 2x ( x+1 ) +x =29
ai làm nhanh mk tích
\(3.2^{2x-1}=24\)
\(2^{2x-1}=8\)
\(\Rightarrow2^{2x-1}=2^3\)
\(\Rightarrow2x-1=3\)
\(2x=4\Rightarrow x=2\)
2x+3x+9=29
-17.(-3)-(x+29)=-11-3x
15-2x=-11-3x
-17-4x=-19.3-2x
46-(52-x)=12.(-7)+2x
giải pt:
a, \(2x^2-6x-1=\sqrt{4x+5}\)
b, \(18x^2+6x-29=\sqrt{12x+61}\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{61}{12}\)
\(\Leftrightarrow36x^2+12x-58-2\sqrt{12x+61}=0\)
\(\Leftrightarrow\left(36x^2+24x+4\right)-\left(12x+61+2\sqrt{12x+61}+1\right)=0\)
\(\Leftrightarrow\left(6x+2\right)^2-\left(\sqrt{12x+61}+1\right)^2=0\)
\(\Leftrightarrow\left(6x+1-\sqrt{12x+61}\right)\left(6x+3+\sqrt{12x+61}\right)=0\)
\(\Leftrightarrow...\) tương tự câu a
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)