Cho hình thang vuông MNPQ có góc M bằng góc Q bằng 90độ, góc MNP bằng 135độ, MN= 3cm, MQ= 4cm. Tính diện tích MNPQ
Giúp e vs, e đang cần gấp ạ!!!!!
Cho hình thang vuông MNPQ có góc M bằng góc Q bằng 90độ, góc MNP bằng 135độ, MN= 3cm, MQ= 4cm. Tính diện tích MNPQ
Từ B vẽ BH là đường trung trực của DC ( H∈DC )
Ta có góc ADC = góc BHC = 90°
=> ABHD là hình thang cân
=> AD=BH=AB=Dh=4(cm) và DH=HC=4(cm)( do BH là đường trung trực)
<=> ΔBHC là Δ vuông cân góc BCH= góc HBC=40°
Từ đó góc ABH + góc HBC = góc ABC = 90°+45°=135°
Vậy góc A= góc D = 90° (gt), góc ABC =135° và góc BCD=45°
Cho hình thang vuông MNPQ vuông góc tại M và Q ; PQ = 1/2 MN. Kéo dài MQ và NP cắt nhau tại A .a) So sánh diện tích hai tam giác MNP và MQP.
b) So sánh diện tích hai tam giác AQP và AQN
c) diện tích hình thang MNPQ bằng 63cm2.TÍnh diện tích tam giác AQP
Cho hình thang MNPQ có MN//PQ, MN<PQ. Đường phân giác của góc MNP cắt PQ tại E.
a) Cho M = 115độ, góc N = 3.P. Tính góc N, P, Q
b) Chứng minh NP=Pe
c) Tìm điều kiện của hình thang MNPQ sao cho NE//MQ
Cho hình thang ABCD có góc A bằng góc D bằng 90độ. E là trung điểm AD biết góc BEC bằng 90 độ,AD =2a .Chứng minh
a/ AB. CD =a bình
b/Chứng minh tam giác EAB đồng dạng tam giác CEB
c/.chứng minh BE là p.g gócABC
Giúp mình vs mình đang cần gấp ạ
cho hình thang abcd có góc a=góc d bằng 90độ có bd vuông góc vs bc, ad=12cm,cd=25cm tính diện tích hình thang abcd
Kẻ đường cao BH
Xét tứ giác ABHD có
\(\widehat{BAD}=90^0\)
\(\widehat{ADH}=90^0\)
\(\widehat{BHD}=90^0\)
Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow AB^2+12^2=BD^2\)(1)
Ta có: ABHD là hình chữ nhật(cmt)
nên AD=BH(hai cạnh đối)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:
\(DC^2=BD^2+BC^2\)
\(\Leftrightarrow BD^2+BC^2=25^2=625\)(2)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:
\(BD\cdot BC=BH\cdot DC\)
\(\Leftrightarrow BD\cdot BC=12\cdot25=300\)
hay \(BC=\dfrac{300}{BD}\)(3)
Thay (3) vào (2), ta được:
\(BD^2+\left(\dfrac{300}{BD}\right)^2=625\)
\(\Leftrightarrow\dfrac{BD^4+90000}{BD^2}=625\)
\(\Leftrightarrow BD^4-625BD^2+90000=0\)
\(\Leftrightarrow BD^4-400BD^2-225BD^2+90000=0\)
\(\Leftrightarrow\left(BD^2-400\right)\left(BD^2-225\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}BD=15\\BD=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB=9\left(cm\right)\\AB=16\left(cm\right)\end{matrix}\right.\)
Diện tích hình thang ABCD là:
\(S_{ABCD}=\dfrac{AB+CD}{2}\cdot AD=\left[{}\begin{matrix}\dfrac{9+25}{2}\cdot12=204\left(cm^2\right)\\\dfrac{9+16}{2}\cdot12=150\left(cm^2\right)\end{matrix}\right.\)
từ B hạ BE\(\perp DC\)
theo bài ra ABCD là hình thang \(=>AB//CD=>AB//DE\)
mà \(\angle\left(A\right)=\angle\left(D\right)=90^o\)=>chứng minh được ABED là hình chữ nhật
\(=>AD=BE=12cm\)
áp dụng hệ thức lượng \(=>BE^2=DE.EC< =>12^2=DE\left(25-DE\right)=>DE=16cm=AB\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)BE}{2}=\dfrac{\left(16+25\right)12}{2}=246cm^2\)
Cho hình thang vuông MNPQ có góc M = góc N = 90 độ , MQ = 32cm , NP = 40cm , MN = 17 cm.
a.Tính diện tích hình thang MNPQ
b. Tính góc P và QP?
Cho hình thang vuông MNPQ có góc M = góc N = 90 độ , MQ = 32cm , NP = 40cm , MN = 17 cm.
a.Tính diện tích hình thang MNPQ
b. Tính góc P và QP?
a)SMNPQ= (MQ+NP).MN:2= (32+40).17:2= 612 cm2
b) Kẻ QH vuông góc với NP => HP= 8 cm
Tam giác HQP vuông tại H => QP = \(\sqrt{353}\)
SinP=\(\dfrac{17}{\sqrt{353}}\) => Góc P= 64.798876350∼\(65^{^{^0}}\)
a)Ta có:\(S_{MNPQ}=\dfrac{\left(MQ+NP\right).MN}{2}=\dfrac{\left(32+40\right).17}{2}=612\left(cm^2\right)\)
b)Kẻ QH⊥NP
Xét tứ giác MNHQ có \(\widehat{QMN}=\widehat{MNH}=\widehat{NHQ}=90^o\)
⇒ MNHQ là hình chữ nhật
⇒ MN=QH=17 cm;MQ=NH=32 cm
Ta có:NH+HP=NP
⇒ HP=NP-NH=40-32=8 cm
Áp dụng định lí Py-ta-go vào ΔQHP vuông tại H
⇒ \(QP=\sqrt{HP^2+HQ^2}=\sqrt{8^2+17^2}=\sqrt{353}\) (cm)
cho hình thang vuông MNPQ vuông góc tại M và Q ; MN = 1/3 PQ . kéo dài QM vàPN cắt nhau tại K
A, so sánh diện tích 2 tam giác MNP và MQP
B,so sánh diện tích 2 tam giác MNK và MPK
C, diện tích hình thang MNPQ bằng 128 cm2 tính diện tích tam giác KNM
A, vi hai tam giác MNP&MQP có chung chiều cao và MN=1/3PQ nên
Suy ra Tam giác MNP=1/3tam giác MQP
Cho hình thang vuông MNPQ có góc M = góc N = 90 độ , MQ = 32cm , NP = 40cm.
a.Tính diện tích hình thang MNPQ
b. Tính góc P và QP?