Kẻ đường cao BH
Xét tứ giác ABHD có
\(\widehat{BAD}=90^0\)
\(\widehat{ADH}=90^0\)
\(\widehat{BHD}=90^0\)
Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow AB^2+12^2=BD^2\)(1)
Ta có: ABHD là hình chữ nhật(cmt)
nên AD=BH(hai cạnh đối)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:
\(DC^2=BD^2+BC^2\)
\(\Leftrightarrow BD^2+BC^2=25^2=625\)(2)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:
\(BD\cdot BC=BH\cdot DC\)
\(\Leftrightarrow BD\cdot BC=12\cdot25=300\)
hay \(BC=\dfrac{300}{BD}\)(3)
Thay (3) vào (2), ta được:
\(BD^2+\left(\dfrac{300}{BD}\right)^2=625\)
\(\Leftrightarrow\dfrac{BD^4+90000}{BD^2}=625\)
\(\Leftrightarrow BD^4-625BD^2+90000=0\)
\(\Leftrightarrow BD^4-400BD^2-225BD^2+90000=0\)
\(\Leftrightarrow\left(BD^2-400\right)\left(BD^2-225\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}BD=15\\BD=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB=9\left(cm\right)\\AB=16\left(cm\right)\end{matrix}\right.\)
Diện tích hình thang ABCD là:
\(S_{ABCD}=\dfrac{AB+CD}{2}\cdot AD=\left[{}\begin{matrix}\dfrac{9+25}{2}\cdot12=204\left(cm^2\right)\\\dfrac{9+16}{2}\cdot12=150\left(cm^2\right)\end{matrix}\right.\)
từ B hạ BE\(\perp DC\)
theo bài ra ABCD là hình thang \(=>AB//CD=>AB//DE\)
mà \(\angle\left(A\right)=\angle\left(D\right)=90^o\)=>chứng minh được ABED là hình chữ nhật
\(=>AD=BE=12cm\)
áp dụng hệ thức lượng \(=>BE^2=DE.EC< =>12^2=DE\left(25-DE\right)=>DE=16cm=AB\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)BE}{2}=\dfrac{\left(16+25\right)12}{2}=246cm^2\)
Lời giải:
Lời giải:
Kẻ đường cao $BH$ xuống $CD$.
Dễ thấy $ABHD$ là hình chữ nhật.
Tam giác $BDC$ vuông tại $B$ có đường cao $BH$. Áp dụng hệ thức lượng trong tam giác vuông:
$BH^2=DH.CH$ hay $144=12^2=DH.CH$
Lại có: $DH+CH=DC=25$
Do đó, theo định lý Viet đảo thì $DH, CH$ là nghiệm của pt $X^2-25X+144=0$
$\Rightarrow (DH, CH)=(16,9), (9,16)$
Nếu $DH=16$ thì $AB=DH=16$. Khi đó $S_{ABCD}=\frac{(16+25).12}{2}=246$ (cm vuông)
Nếu $DH=9$ thì $AB=DH=9$. Khi đó $S_{ABCD}=\frac{(9+25).12}{2}=204$ (cm vuông)