a)SMNPQ= (MQ+NP).MN:2= (32+40).17:2= 612 cm2
b) Kẻ QH vuông góc với NP => HP= 8 cm
Tam giác HQP vuông tại H => QP = \(\sqrt{353}\)
SinP=\(\dfrac{17}{\sqrt{353}}\) => Góc P= 64.798876350∼\(65^{^{^0}}\)
a)Ta có:\(S_{MNPQ}=\dfrac{\left(MQ+NP\right).MN}{2}=\dfrac{\left(32+40\right).17}{2}=612\left(cm^2\right)\)
b)Kẻ QH⊥NP
Xét tứ giác MNHQ có \(\widehat{QMN}=\widehat{MNH}=\widehat{NHQ}=90^o\)
⇒ MNHQ là hình chữ nhật
⇒ MN=QH=17 cm;MQ=NH=32 cm
Ta có:NH+HP=NP
⇒ HP=NP-NH=40-32=8 cm
Áp dụng định lí Py-ta-go vào ΔQHP vuông tại H
⇒ \(QP=\sqrt{HP^2+HQ^2}=\sqrt{8^2+17^2}=\sqrt{353}\) (cm)