Cho phương trình x^2−4x+2m−1=0 ( m là tham số ) Tìm m để pt trên có 2 nghiệm phân biệt X1 và X2 sao cho |x1−x2|=2
cho phương trình x^2-mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
cho pt x^2-2(2m+1)+2m=0 ( với m là tham số) tìm m để pt có 2 nghiệm x1,x2 sao cho x1,x2 là độ dài 2 cạnh của tam giác vg có cạnh huyền là 2 căn 3
Xét (delta)=(2m+1)^2-2m
=4m^2+4m+1-2m
=4m^2+2m+1(luôn lớn hôn hoặc bằng 0)
Suy ra phương trình đã cho luôn có nghiệm
Theo hệ thức Vi-ét có x1+x2=2(2m+1)
x1.x2=2m
Theo bài ra có x1^2+x2^2=(2căn3)^2
(x1^2+x2^2)^2-2x1.x2=12
4(2m+1)^2-4m=12
16m^2+12m+4=12
16m^2+12m-8=0
Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)
Bài 1: cho pt: x^2 -mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
bài 2: cho pt x^2 -2mx+m^2- 4=0
tìm m để pt đã cho có 2 nghiệm phân biệt:
a) x2=2x1 b) 3x1+2x2=7
Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\)
\(\Delta=25-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm pb khi m =< 33/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)
Thay vào ta được : \(\dfrac{-7}{m-2+5+1}=2\Leftrightarrow\dfrac{-7}{m+4}=2\Rightarrow-7=2m+8\Leftrightarrow m=-\dfrac{15}{2}\)(tm)
\(Pt:x^2+5x+m-2=0.có.2.nghiệm.phân.biệt\\ x_1,x_2\ne1\\ \Leftrightarrow\left\{{}\begin{matrix}\Delta=5^2-4\left(m-2\right)=33-4m>0\\1^2+5.1+m-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m\ne-4\end{matrix}\right.\)
Theo định lí Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\\ Từ.giả.thiết:\\ \dfrac{ 1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Rightarrow x_2-1+x_1-1=2\left(x_1-1\right)\left(x_2-1\right)\\ \Leftrightarrow\left(x_1+x_2\right)-2=2\left[x_1x_2-\left(x_1+x_2\right)+1\right]\\ \Leftrightarrow-5-2=2\left(m-2+5+1\right)\Leftrightarrow-7=2\left(m+4\right)\\ \Rightarrow m=\dfrac{-15}{2}\)
Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
a) Giải phương trình khi m = - 4.
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(x_1^2+x_2^2-2x_1=25+2x_2\)
a) Thay m = -4 vào phương trình, ta có:
\(x^2+5x-6=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)
KL: Vậy phương trình có tập nghiệm \(S=\left\{-6;1\right\}\) khi m = -4
b) Xét \(\Delta=5^2-4.1.\left(m-2\right)=25-4m+8=33-4m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)
Theo định lý Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1.x_2=m-2\end{matrix}\right.\)
Để \(x_1^2+x^2_2-2x_1=25+2x_2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)-25=0\)
<=> \(\left(-5\right)^2-2\left(m-2\right)-2\left(-5\right)-25=0\)
<=> \(25-2m+4+10-25=0\)
<=> 2m = 14
<=> m = 7 (Tm)
Vậy m = 7 để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x^2_2-2x_1=25+2x_2\)
1.Cho pt x2-2(m+1)x + m-2=0, với x là ẩn số, m thuộc R
a, Giải pt khi m=-2
b, Giải sử pt đã cho có 2 nghiệm phân biệt x1, x2. tìm hệ thức liên hệ giữa x1 và x2 mà ko phụ thuộc vào m
2. cho pt: x2-2(m-3)x-1=0
Tìm m để pt có nghiệm x1, x2 mà biểu thức a=x21 - x1x2 + x22 đạt giá trị nhỏ nhất? tìm gia trị nhỏ nhất đó
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
cho phương trình x^2+6x+m=0
a) tìm m để phương trình có 2 nghiệm phân biệt
b) xác định m để phương trình có 2 nghiệm x1:x2 thỏa mãn x1=2x2
a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)
\(=9-m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
\(\Rightarrow 9-m>0\)
\(\Leftrightarrow m<9\)
Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt
b)Theo định lí Vi-ét ta có:
\(x_1.x_2=\frac{-m}{1}=-m(1)\)
\(x_1+x_2=\frac{-6}{1}=-6\)
Lại có \(x_1=2x_2\)
\(\Rightarrow3x_2=-6\)
\(\Leftrightarrow x_2=-2\)
\(\Rightarrow x_1=-4\)
Thay x1;x2 vào (1) ta được
\(8=m\)
Vậy m-8 thì x1=2x2
cho phương trình X^2 - 4x + 2m -1 +0 ( m là tham số ) Tìm m để pt trên có 2 nghiệm phân biệt và | X1 -X2 | =0
Lời giải:
Đề bài không chuẩn:
$|x_1-x_2|=0\Leftrightarrow x_1=x_2\Leftrightarrow $ PT có nghiệm kép chứ không phải nghiệm phân biệt
Để PT có nghiệm kép thì $\Delta'=0\Leftrightarrow 4-(2m-1)=0\Leftrightarrow m=\frac{5}{2}$
cho phuong trình: x^2 -2(m-1)x-3m+m^2
a,tìm m để pt trên có nghiệm
b,trong trường hợp pt có 2 nghiệm x1, x2 tìm m thoả mãn X1^2+X2^2=16
a) để pt có nghiệm <=> đen ta phẩy >= 0
<=> (-(m-1))2 - 1(-3m+m2) >= 0
<=> (m-1)2 +3m-m2 >= 0
<=> m2-2m+1+3m-m2 >= 0
<=> m+1 >= 0
<=> m >= -1
vậy khi m >= -1 thì pt có nghiệm
b) khi m >= -1 thì pt có nghiệm ( theo a)
theo vi-ét ta có: x1+x2 = 2(m-1) (1)
x1.x2 = -3m + m2 (2)
theo đầu bài ta có: x12 + x22=16
<=> x12+ 2x1x2+ x22 -2x1x2= 16
<=> (x1+x2)2 -2x1x2 = 16 (3)
thay (1) và (2) và (3) rồi tính m.
kết quả: khi m=3 thì pt có nghiệm thỏa mãn đk đó.
Cho pt x2-5x + m=0 (m là tham sô). tìm m để pt có 2 nghiệm x1, x2 thỏa mãn |x1-x2| =3
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4