Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2017 lúc 11:37

DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2022 lúc 13:46

Giao điểm A của d1 và d2 là nghiệm:

\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)

\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:

\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)

Big City Boy
Xem chi tiết
Gia HuyHuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 13:53

a: Phương trình hoành độ giao điểm là:

2x+1=x+1

=>2x-x=1-1

=>x=0

Thay x=0 vào y=x+1, ta được:

y=0+1=1

=>A(0;1)

b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b

Thay x=0 và y=1 vào (d4), ta được:

b-4*0=1

=>b=1

=>y=-4x+1

c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:

a+0,5*0=1

=>a=1

=>y=0,5x+1

d: Thay x=0 và y=1 vào (d3), ta được:

0*(m+1)+2m-1=1

=>2m-1=1

=>2m=2

=>m=1

Ptrinh
Xem chi tiết
Akai Haruma
1 tháng 5 2023 lúc 18:27

Lời giải:

VTPT của $(d)$: $(2,-3)$

Đường thẳng $\Delta$ vuông góc với $(d)$ nên VTCP của $(\Delta)$ chính là $(2,-3)$

$\Rightarrow$ VTPT $ của $(\Delta)$ là $(3,2)$

PTĐT $(\Delta)$: $3(x-1)+2(y-2)=0$

$\Leftrightarrow 3x+2y-7=0$

vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2021 lúc 22:06

Denta tạo với d1, d2 1 tam giác cân với đỉnh là giao điểm của d1, d2 khi và chỉ khi denta vuông góc phân giác tạo bởi d1, d2

Gọi \(A\left(x;y\right)\) là 1 điểm bất kì thuộc phân giác tạo bởi 2 đường thẳng d1, d2

\(\Rightarrow\dfrac{\left|x-7y+17\right|}{\sqrt{1^2+\left(-7\right)^2}}=\dfrac{\left|x+y-5\right|}{\sqrt{1^2+1^2}}\Leftrightarrow\left|x-7y+17\right|=\left|5x+5y-25\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+5y-25=x-7y+17\\5x+5y-25=-x+7y-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3y+\dfrac{21}{2}=0\\3x-y-4=0\end{matrix}\right.\)

\(\Rightarrow\Delta\) nhận \(\left(3;-1\right)\) hoặc \(\left(1;3\right)\) là 1 vtpt

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}3\left(x-0\right)-1\left(y-1\right)=0\\1\left(x-0\right)+3\left(y-1\right)=0\end{matrix}\right.\)

Trần Gia Long
Xem chi tiết
Thái Hưng Mai Thanh
15 tháng 3 2022 lúc 8:31

B

Zero Two
15 tháng 3 2022 lúc 8:33

B

Minh Anh sô - cô - la lư...
15 tháng 3 2022 lúc 8:35

B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2018 lúc 14:56

Đáp án D

+Giao điểm của d1 và d2  là nghiệm của hệ

+Lấy M(1 ; 0) thuộc d1. Tìm M’ đối xứng M qua d2

+Viết phương trình đường thẳng ∆  đi qua M và vuông góc với  d2

3(x-1) + 1( y=0) =0 hay 3x+ y-3= 0

Gọi H là giao điểm của ∆ và đường thẳng d2. Tọa độ H là nghiệm của hệ

Ta có H là trung điểm của MM’. Từ đó suy ra tọa độ:

Viết phương trình đường thẳng d  đi qua 2 điểm A và M’ :  đi qua A(0 ;1) , vectơ chỉ phương 

=> vectơ pháp tuyến 

Trần Công Thanh Tài
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 23:08

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}x+2y-1=0\\x-3y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{3}{5};\dfrac{4}{5}\right)\)

Chọn \(N\left(1;0\right)\) là 1 điểm thuộc \(d_1\)

Gọi \(d_3\) là đường thẳng qua N và vuông góc \(d_2\Rightarrow d_3\) nhận (3;1) là 1 vtpt

Phương trình \(d_3\):

\(3\left(x-1\right)+1\left(y-0\right)=0\Leftrightarrow3x+y-3=0\)

Gọi P là giao điểm \(d_2;d_3\Rightarrow\) tọa độ P là nghiệm:

\(\left\{{}\begin{matrix}3x+y-3=0\\x-3y+3=0\\\end{matrix}\right.\) \(\Rightarrow P\left(\dfrac{3}{5};\dfrac{6}{5}\right)\)

Gọi Q là điểm đối xứng N qua \(d_2\Rightarrow P\) là trung điểm NQ

\(\Rightarrow\left\{{}\begin{matrix}x_Q=2x_P-x_N=\dfrac{1}{5}\\y_Q=2y_P-y_N=\dfrac{12}{5}\end{matrix}\right.\) \(\Rightarrow Q\left(\dfrac{1}{5};\dfrac{12}{5}\right)\)

\(\Rightarrow MQ\) đối xứng \(MN\) qua \(d_2\Rightarrow MQ\) là đường thẳng d cần tìm 

\(\overrightarrow{MQ}=\left(\dfrac{4}{5};\dfrac{8}{5}\right)=\dfrac{4}{5}\left(1;2\right)\) \(\Rightarrow\) đường thẳng d nhận (2;-1) là 1 vtpt

Phương trình d:

\(2\left(x-\dfrac{1}{5}\right)-1\left(y-\dfrac{12}{5}\right)=0\Leftrightarrow2x-y+2=0\)