Lời giải:
VTPT của $(d)$: $(2,-3)$
Đường thẳng $\Delta$ vuông góc với $(d)$ nên VTCP của $(\Delta)$ chính là $(2,-3)$
$\Rightarrow$ VTPT $ của $(\Delta)$ là $(3,2)$
PTĐT $(\Delta)$: $3(x-1)+2(y-2)=0$
$\Leftrightarrow 3x+2y-7=0$
Lời giải:
VTPT của $(d)$: $(2,-3)$
Đường thẳng $\Delta$ vuông góc với $(d)$ nên VTCP của $(\Delta)$ chính là $(2,-3)$
$\Rightarrow$ VTPT $ của $(\Delta)$ là $(3,2)$
PTĐT $(\Delta)$: $3(x-1)+2(y-2)=0$
$\Leftrightarrow 3x+2y-7=0$
Câu 3. Cho điểm A(1; 2) và đường thẳng d: 2x - 3y - 1 = 0 Viết phương trình đường thẳng triangle delta*i qua A và song song với d.
Trong mặt phẳng Oxy, cho điểm A( 2; -1) và đường thẳng d có phương trình 3x - 4y +5 = 0. a/ Viết phương trình tham số đường thẳng đi qua điểm A và vuông góc với đường thẳng d. b/ Viết phương trình đường tròn (C) có tâm là điểm A và cắt đường thẳng d tại 2 điểm M, N sao cho MN = 8.
Trong mặt phẳng tọa độ Oxy cho m điểm M 1,0 và đường thẳng d :x -4y +5=0. a ,viết phương trình đường thẳng d qua m và song song với đường thẳng d x - 4y + 5 = 0 b,viết phương trình đường thẳng d qua m và vuông góc với đường thẳng d x - 4y + 5 = 0 , C,Viết phương trình đường tròn {C} M và tiếp xúc với đường thẳng d x - 4y + 5 = 0
Viết phương trình đường thẳng \(\left(\Delta\right)\) vuông góc với đường thẳng \(\left(d\right):x+y+6=0\) và \(\left(\Delta\right)\) cắt đường tròn \(\left(C\right):\left(x+2\right)^2+\left(y-1\right)^2=25\) tại hai điểm M và N sao cho \(S_{\Delta IMN}=\dfrac{25}{2}\) ( biết \(I\) là tâm đường tròn )
Cho △ABC biết A(-2;4) B(5;5) C(6;-2)
a) Viết phương trình đường thẳng đi qua C và vuông góc với AB
b) Viết phương trình đường trung tuyến BK
c) Viết phương trình đường tròn tâm B,bán kính AC
d) Viết phương trình đi qua 3 điểm A,B,C
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) \(x^2+y^2-2x-4=0\) và đường thẳng (d): \(x-y+1=0\)
1) Viết pt đường thẳng (d1) vuông góc với (d) và tiếp xúc với (C)
2) Viết pt đương thẳng (Δ) song song với (d) và cắt (C) tại 2 điểm M, N có MN = 2
3) Tìm trên (d) điểm P biết rằng qua P kẻ được 2 tiếp tuyến PA, PB đến (C) có ΔPAB là tam giác đều. (trong đó A, B là 2 tiếp điểm)
Viết phương trình đường tròn đường có tâm \(A(1;-2)\) và tiếp xúc với đường thẳng \(d:2x-y+6=0\)
Cho điểm \(M\left(1;-2\right)\) và đường thẳng \(\Delta\) có phương trình :
\(3x-4y-1=0\)
a) Tìm tọa độ điểm M' đối xứng với M qua đường thẳng \(\Delta\)
b) Viết phương trình đường thẳng \(\Delta'\) đối xứng với \(\Delta\) qua điểm M
c) Viết phương trình đường tròn tâm M và tiếp xúc với đường thẳng \(\Delta\)