Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Ngân
Xem chi tiết
Nguyễn Đức Trí
16 tháng 7 2023 lúc 14:52

\(C=16x^2-8x+2024\)

\(\Rightarrow C=16x^2-8x+1+2023\)

\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)

\(\Rightarrow Min\left(C\right)=2023\)

\(D=-25x^2+50x-2023\)

\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)

\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=1998\)

\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)

\(\Rightarrow Max\left(B\right)=200\)

\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)

\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)

\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)

\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)

\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)

\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)

\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)

\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)

\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)

\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(F\right)=48\)

Gemini
Xem chi tiết
Duong FakeHuan
15 tháng 8 2020 lúc 15:26

a.x = -3

b.\(\frac{13}{2}\)

c. (x+4)2

d. không bik

Khách vãng lai đã xóa
Ngô Chi Lan
15 tháng 8 2020 lúc 15:26

Bài làm:

a) \(\left(x+4\right)^2-1=0\)

\(\Leftrightarrow\left(x+4\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)

b) \(\left(2x-3\right)^2=100\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)

c) \(x^2+8x+16=0\)

\(\Leftrightarrow\left(x+4\right)^2=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Rightarrow2x-3=0\)

\(\Rightarrow x=\frac{3}{2}\)

Khách vãng lai đã xóa
Trí Tiên亗
15 tháng 8 2020 lúc 15:32

a)\(\left(x+4\right)^2-1=0\Leftrightarrow\left(x+4\right)^2=1\)

\(\Leftrightarrow\left(x+4\right)^2=1^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)

b) \(\left(2x-3\right)^2=100\)

\(\Leftrightarrow\left(2x-3\right)^2=10^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)

c) \(x^2+8x+16=0\)

\(\Leftrightarrow\left(x+4\right)^2=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

d) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

Khách vãng lai đã xóa
Linh Nguyễn Hương
Xem chi tiết
Phong Thần
17 tháng 9 2018 lúc 20:33

a) \(A=9x^2-6x+3\)

\(A=\left(3x\right)^2-2.3x+1+2\)

\(A=\left(3x-1\right)^2+2\)

\(\left(3x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3

b) \(B=x^2-3x\)

\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)

\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x

\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2

c) \(C=x^2+8x+10\)

\(C=x^2+2.x.4+16-6\)

\(C=\left(x+4\right)^2-6\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x

\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4

d) \(D=x^2-2x+15+y^2+3y\)

\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)

\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y

\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2

e) \(E=2x^2+4xy+8x+5y^2-4y-100\)

\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

\(\left(x+2y\right)^2\ge0\) với mọi x,y

\(\left(x+4\right)^2\ge0\) với mọi x

\(\left(y-2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y

\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2

f) \(F=x^2-6xy+26+10y^2-10y\)

\(F=x^2-6xy+9y^2+y^2-10y+25+1\)

\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)

\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2\ge0\) với mọi x,y

\(\left(y-5\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y

\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)

Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5

Nguyên Tiến Đạt
Xem chi tiết
WWE world heavyweight ch...
2 tháng 4 2016 lúc 15:58

\(1+2+3+4+5+6+7+...+x=351\)

\(\frac{\left(1+x\right)x}{2}=351\)

\(\left(x+1\right)x=351\cdot2=702=26\cdot27\)

\(Vậyx=26\)

\(8x+2x=100\)

\(x\left(8+2\right)=100\)

\(10x=100\)

\(x=\frac{100}{10}=10\)

\(Vậyx=10\)

Nguyên Tiến Đạt
2 tháng 4 2016 lúc 19:44

8x+2x=100

10x=100

x=100:10

x=10

Nguyên Tiến Đạt
6 tháng 4 2016 lúc 19:40

8x.2x=10

10x=100

vậy x=100:10

=> x=10

chang
Xem chi tiết
Hồng Phúc
31 tháng 8 2021 lúc 15:36

\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\left(x< 0\right)\)

\(D=x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\)

Hồng Phúc
31 tháng 8 2021 lúc 15:45

 

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:48

\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)

\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)

ngọc linh
Xem chi tiết
khánh huyền
Xem chi tiết
Nguyễn Duy Khang
12 tháng 8 2021 lúc 8:04

\(a,8x-3=5x+12\\ \Leftrightarrow8x-5x=12+3\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=\dfrac{15}{3}=5\)

\(b,x-12+4x=25+2x-1\\ \Leftrightarrow x+4x-2x=25-1+12\\ \Leftrightarrow3x=36\\ \Leftrightarrow x=\dfrac{36}{3}=12\)

\(c,7-\left(2x+4\right)=-\left(x+4\right)\\ \Leftrightarrow7-2x-4=-x-4\\ \Leftrightarrow-2x+x=-4+4-7\\ \Leftrightarrow-x=-7\\ \Leftrightarrow x=7\)

\(d,3-4x\left(45-2x\right)=8x^2+x-300\\ \Leftrightarrow3-100x+8x^2=8x^2+x-300\\ \Leftrightarrow8x^2-8x^2-100x-x=-300-3\\ \Leftrightarrow-101x=-303\\ \Leftrightarrow x=\dfrac{-303}{-101}=3\)

Đề câu d của bạn hình như sai dấu ý

 

khánh huyền
12 tháng 8 2021 lúc 8:46

sửa lại

.d. 3 - 4x (25 - 2x) = 8x ² + x - 300

Đỗ Như Quỳnh
Xem chi tiết
Hà Hồng Anh
Xem chi tiết
Nguyễn Thị Xuân Dung
23 tháng 7 2018 lúc 10:00

\(C=2x^2+5y^2+4xy+8x-4y-100 \)

\(C=\left(x^2+8x+16\right)+\left(y^2-4y+4\right)+\left(x^2+4xy+4y^2\right)-120\)

\(C=\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Vậy GTNN của C là -120 khi x = -4; y = 2

yennhi tran
23 tháng 7 2018 lúc 10:05

\(C=x^2+4xy+4y^2+x^2+8x+16+y^2-4y+4-120\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\)

vậy GTNN của C là -120 khi \(x=-4;y=2\)