Giải bpt
\(\left(x-2\right)^2\ge\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)
câu hình
ad bđt svacso
\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)
tt vs mấy cái còn lại rồi dùng S=p.r
Giải bpt: \(\dfrac{\left(3-2x-x^2\right)\sqrt{2x-1}}{\sqrt{2x-1}}\)≥0
\(\sqrt{2x-1}\ge0\)
\(\Rightarrow BPT\ge0\) khi
\(3-2x-x^2\ge0\)
\(\Leftrightarrow x^2+2x-3\le0\)
\(\Leftrightarrow\left(x+1\right)^2-4\le0\)
\(\Leftrightarrow\left(x+1\right)^2\le4\)
\(\Leftrightarrow x+1\le2\)
\(\Rightarrow x\le1\)
Giải Bpt
\(4\left(x+1\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\)
ĐKXĐ: \(x\ge-\frac{3}{2}\)
Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:
\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)
\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)
- Với \(x=-1\) ko phải là nghiệm
- Với \(x\ne-1\)
\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)
\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)
\(\Leftrightarrow2\sqrt{3+2x}< -3\)
BPT vô nghiệm
1.giải các bpt sau
a.\(\left(x-3\right)\left(x+3\right)\ge x^2-7x+1\)
b.\(\dfrac{1,5-x}{5}\ge\dfrac{4x+5}{2}\)
2.giải các pt sau
\(x^3+1=x.\left(x+1\right)\)
giải bpt logarit đưa về cùng cơ số
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{0,5-x}x}\ge\left(\dfrac{5\sqrt[]{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
- Ai đó làm giúp với nhé
bpt logarit đưa về cùng cơ số :
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{x-0,5}x}\ge\left(\dfrac{5\sqrt{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
2.
Xét với \(x\ge1\)
\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)
\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)
Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)
\(\Rightarrow m+3t^2-2t=0\)
\(\Leftrightarrow3t^2-2t=-m\)
Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)
\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)
\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)
\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)