Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tinh Lãm
Xem chi tiết
Kinder
Xem chi tiết
Yeutoanhoc
11 tháng 6 2021 lúc 7:51

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Hữu Ngọc Minh
21 tháng 10 2017 lúc 18:11

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

vũ tiền châu
21 tháng 10 2017 lúc 20:04

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

khánhchitt3003
22 tháng 10 2017 lúc 20:58

câu hình 

ad bđt svacso

\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)

tt vs mấy cái còn lại rồi dùng S=p.r

Nguyễn Thùy Linh
Xem chi tiết
Lê Anh Duy
28 tháng 2 2019 lúc 12:41

\(\sqrt{2x-1}\ge0\)

\(\Rightarrow BPT\ge0\) khi

\(3-2x-x^2\ge0\)

\(\Leftrightarrow x^2+2x-3\le0\)

\(\Leftrightarrow\left(x+1\right)^2-4\le0\)

\(\Leftrightarrow\left(x+1\right)^2\le4\)

\(\Leftrightarrow x+1\le2\)

\(\Rightarrow x\le1\)

Tinh Lãm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 18:39

ĐKXĐ: \(x\ge-\frac{3}{2}\)

Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:

\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)

- Với \(x=-1\) ko phải là nghiệm

- Với \(x\ne-1\)

\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)

\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)

\(\Leftrightarrow2\sqrt{3+2x}< -3\)

BPT vô nghiệm

nguyen ngoc son
Xem chi tiết
迪丽热巴·迪力木拉提
2 tháng 5 2021 lúc 22:54

undefined

Hùng
Xem chi tiết
Hùng
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:44

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:50

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:56

2.

Xét với \(x\ge1\)

\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)

\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)

Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow m+3t^2-2t=0\)

\(\Leftrightarrow3t^2-2t=-m\)

Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)

\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)

\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)

\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)