Tìm m biết m^2 < 4
Cho đường thẳng (d) : y = (m – 2)x + 1
a. Tìm m biết M(– 2 ; 2) thuộc (d)
b. Tìm m biết (d) đi qua điểm N( – 3 ; 4)
c. Tìm m biết (d) cắt trục hoành tại điểm có hoành độ là 5
d. Tìm m biết cắt trục tung tại điểm có tung độ là -2
e. Tìm m biết (d) // (d’) : y = 3x – 1
\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)
Cho biết : M = 4/x+2+3/x-2-5x+2/x^2-4 a) tìm điều kiện xác định của M b) rút gọn M c) tìm x để M = 2/5
\(M=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+3\left(x+2\right)-\left(5x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2}{x+2}\)
Để \(M=\dfrac{2}{5}\) thì \(\dfrac{2}{x+2}=\dfrac{2}{5}\)
Suy ra :
\(2.5=2\left(x+2\right)\)
\(\Leftrightarrow2x+4=10\)
\(\Leftrightarrow x=3\)
Vậy \(M=\dfrac{2}{5}\) thì x = 3
tìm m biết:
m + 2 + m + 4 + m + 6 + m + 8 = 432
............................................................
............................................................
............................................................
............................................................
............................................................
giải hộ mik bài này
viết tất cả 6 dòng luôn nha
Ơ thế sao t lại sai T GIỐNG NÓ MAH
m + 2 + m + 4 + m + 6 + m + 8 = 432
M = 2 + 4 + 6 + 8
M = 20
M = 432 - 20
M = 412
M = 412 : 4
M = 13
Vậy m + 2 + m + 4 + m + 6 + m 8 = 432; kết luận 13 + 2 + 13 + 4 + 13 + 6 + 8
Dễ
=(2+8)+(4+6)+(mx4)=432
=10+10+mx4=432
=20+m=108
=108-20
= 88
Học tốt!
1. Tìm giá trị lớn nhất của biểu thức T, biết T = (x-13)2 - 26
2. Tìm giá trị lớn nhất của biểu thức M, biết M = 20 - (x-14)2
3. Tìm m và n biết (20 - m - n)2 + (m - 13)2 <= 0
4. Tìm y biết: (20 + y)2 -144 = 0
5. Tìm Z biết: (Z - 15)2 + 37 = 0
1.
Ta thấy $(x-13)^2\geq 0$ với mọi $x$
$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$
Vậy GTNN của $T$ là $-26$.
Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$
2.
Ta thấy: $(x-14)^2\geq 0$ với mọi $x$
$\Rightarrow M=20-(x-14)^2\leq 20-0=20$
Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$
Hay $x=14$.
3.
Ta thấy: $(20-m-n)^2\geq 0$ với mọi $m,n$
$(m-13)^2\geq 0$ với mọi $m$
$\Rightarrow (20-m-n)^2+(m-13)^2\geq 0$ với mọi $m,n$
Do đó để $(20-m-n)^2+(m-13)^2\leq 0$ thì:
$(20-m-n)^2+(m-13)^2=0$
Điều này xảy ra khi $(20-m-n)^2=(m-13)^2=0$
$\Leftrightarrow m=13; m+n=20\Leftrightarrow m=13; n=7$
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
tìm m biết 1/5 x m=6/7, m:3/4=10/9,m+2/9=5/6,4/5-m=7/15
tìm m biết (3+m)2 - 4 x 2 x (-3m)
Baì 4: Tìm các số nguyên m,n biết
m/2 - 2/n = 1/2
Tìm đa thức M biết:
Đề 1 (x^2+ax-5) - (x^2-y) -M = 2xy+x^2-y
Đề 2 M-(2x^2+3x+1)+ (x^2-5x+4) = x^4-3x^2+2x
a) Tìm đa thức M của đề 1 và đề 2
b) Tìm bậc của 2 đa ths trên
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0