\(lim_{x\rightarrow3}\frac{\sqrt{5x+1}-2\sqrt{7x+4}+4\sqrt[3]{x+5}-x+1}{x^2-3x}\)
Giải phương trình vô tỉ:
a) \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
c) \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
d) \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
e) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
g) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
c/ Vế phải là \(181-4x\) hay \(18-14x\)?
d/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t>0\)
\(\Rightarrow t^2=2x+2\sqrt{x^2-16}\)
Pt trở thành:
\(\frac{t}{2}=\frac{t^2}{2}-6\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)
\(\Leftrightarrow x^2-16=64-16x+x^2\)
\(\Rightarrow x=...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
\(lim_{x->\frac{+}{ }\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}\)
Giới hạn này tiến đến đâu vậy bạn? 2 trường hợp khác nhau đúng ko?
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=1\)
\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}=\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{1+\frac{3}{x}+\frac{5}{x^2}}}{x\sqrt[3]{1+\frac{7}{x}+\frac{8}{x^3}}}=-1\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
giải phương trình :
a,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
b, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
c, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
ae gải hộ mk cái: giải phương trình
1: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=\frac{x^2+4}{x}\)
2: \(\sqrt{x+3}-\sqrt{1-x}=1+x\)
3: \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
4:\(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}=2x\)
5:\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}\)
6:\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
7:\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
mọi người jup mình giải đi khó wá
1 bài thui cx đc
Giải phương trình:
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b) \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
c) \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)
d) \(\sqrt{9x^2+15x+4}+5\sqrt{4x-7}=5\sqrt{3x+1}+\sqrt{12x^2-5x-28}\)
e) \(\sqrt{x^2-3x+5}+\sqrt{x+4}=\sqrt{x^2-x-1}+\sqrt{2x+1}\)
f) \(\frac{1}{\sqrt{x-1}+\sqrt{x-2}}+\frac{1}{\sqrt{x-2}+\sqrt{x-3}}+...+\frac{1}{\sqrt{x-9}+\sqrt{x-10}}\)
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
chết, đánh nhầm dòng tương đương cuối:
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{2}{\sqrt{x^2+7x+7}+1}\right]=0\)
giải pt :
a, \(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}=\sqrt{3x^2-5x-1}+\sqrt{x^2-2}\)
b, \(\sqrt{x}+\sqrt{3-x}=x^2-x-2\)
c, \(\sqrt{x+6}+\sqrt{x-1}=x^2-1\)
giải pt
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}\)= \(x+\sqrt{2x-\frac{5}{x}}\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\)\(\sqrt{x^2-3x+4}\)
\(\left(x+2\right)\sqrt{x+1}=2x+1\)
CỨU TÔI VỚI NGÀY MAI I HOK ÒI. PLEASE HELP HELP HELP ME