Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hậu Lê
Xem chi tiết
nightqueen
Xem chi tiết
Tô Mì
2 tháng 4 2022 lúc 11:38

\(2xy^2-3xy+x^2-4-C=xy^2-x^2+2y^2+1\)

\(\Rightarrow C=2xy^2-3xy+x^2-4-\left(xy^2-x^2+2y^2+1\right)\)

\(=2xy^2-3xy+x^2-4-xy^2+x^2-2y^2-1\)

\(=xy^2-3xy+2x^2-2y^2-5\)

Thay x = 2 và y = -1 vào C ta được : 

\(C=2.\left(-1\right)^2-3.2.\left(-1\right)+2.2^2-2.\left(-1\right)^2-5=9\)

Vậy : Khi x = 2 và y = -1 thì giá trị của C là -9.

Đặng Phan Nhật Huy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2024 lúc 19:45

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

Nguyễn Việt Lâm
13 tháng 1 2024 lúc 19:50

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

Khánh Linh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 12:48

a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)

=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)

=>\(2A=4x^2+4y^2-2x^2y^2\)

=>\(A=2x^2+2y^2-x^2y^2\)

b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)

=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)

=>\(2A=4x^2+2xy-8y-2y^2\)

=>\(A=2x^2+xy-4y-y^2\)

c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)

=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)

=>\(A=-x^2y+4xy^3+2xy^2\)

minh pham
Xem chi tiết
Nè Na
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 22:56

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:36

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:25

\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)

\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)

\(=-2x^2y-xy^2\)

\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)

\(=8\cdot3-2\cdot9\)

=6

thanh
Xem chi tiết
Minh Hiếu
25 tháng 11 2021 lúc 19:53

+ \(xy\left(3x-2y\right)-2xy^2\)

\(=xy\left(3x-2y-2y\right)\)

\(=3x^2y\)

+ \(\left(x^2+4x+4\right)\left(x+2\right)\)

\(=\left(x+2\right)^2\left(x+2\right)\)

\(=\left(x+2\right)^3\)

+ \(\dfrac{2\left(x-1\right)}{x^2}-\dfrac{x}{x-1}\)

\(=\dfrac{2\left(x-1\right)^2-x^3}{x^2\left(x-1\right)}\)

\(=\dfrac{2\left(x^2-2x+1\right)-x^3}{x^2\left(x-1\right)}\)

\(=\dfrac{2x^2-4x+2-x^3}{x^2\left(x-1\right)}\)

\(=\dfrac{-x^3+2x^2-4x+1}{x^2\left(x-1\right)}\)

Nguyễn Trần Nhật Khang
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
18 tháng 1 2022 lúc 13:42

Cái này y hệt cái đề mik thi:)

tôi là người thông minh
18 tháng 1 2022 lúc 13:49

trời dài thế làm lâu phết đó nha hừm làm theo đúng công thức là được :)

tôi là người thông minh
18 tháng 1 2022 lúc 14:09

b) 24x^2+6x^2y−2x−12yx−3y^2x+y 

tôi làm theo cách tìm tích số

nếu thấy đúng thì tick cho tôi nha

my dung
Xem chi tiết