Bài 7 \(\Delta ABC\) có \(a=2\sqrt{3},b=2\sqrt{2},c=\sqrt{6}+\sqrt{2}\) . Tính A , B , C ha
Bài 6 : \(\Delta ABC\) có \(a=\sqrt{6},b=2,c=\sqrt{3}+1\) => A , B , C , ha
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{2}\Rightarrow A=60^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^0\)
\(h_a=\frac{bc.sinA}{a}=\frac{2.\left(\sqrt{3}+1\right)sin60^0}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
Bài 1:Tìn ĐKXĐ
a.\(\sqrt{\dfrac{2}{^{^{^{ }}}x^2}}\)
b.\(\sqrt{\dfrac{-3}{3x+5}}\)
Bài 2:
a.\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
c,\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
Tính:
\(a.\) \(A=\sqrt{12}-2\sqrt{48}+\dfrac{7}{5}\sqrt{75}\)
\(b.\) \(B=\sqrt{14-6\sqrt{5}}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(c.\) \(C=\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(d.\) \(D=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}-5}{\sqrt{5}}-\dfrac{11}{2\sqrt{5}+3}\)
a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)
b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)
d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)
Bài 3 : \(\Delta\) ABC thoản mãn \(\frac{a}{\sqrt{3}}=\frac{b}{\sqrt{2}}=\frac{2c}{\sqrt{6}-\sqrt{2}}=t\) . Tính :
a , các góc
b , cho \(a=2\sqrt{3}\) tính R
\(\Rightarrow\left\{{}\begin{matrix}a=t\sqrt{3}\\b=t\sqrt{2}\\c=\frac{t\left(\sqrt{6}-\sqrt{2}\right)}{2}\end{matrix}\right.\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{2t^2+\left(2-\sqrt{3}\right)t^2-3t^2}{t^2.\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}=-\frac{1}{2}\)
\(\Rightarrow A=120^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=15^0\)
\(R=\frac{a}{2sinA}=\frac{2\sqrt{3}}{2sin120^0}=2\)
Bài 1:
a)\(\sqrt{\left(2\sqrt{6}-4\right)^2}+\sqrt{15-6\sqrt{6}}\)
b) \(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{19+2\sqrt{18}}\)
c) \(\sqrt{9+4\sqrt{5}}-\sqrt{\left(1-\sqrt{5}^2\right)}\)
Bài 2: Biến đổi biểu thức
a) \(\dfrac{1}{\sqrt{7}+3}+\dfrac{1}{\sqrt{7}-3}\)
b) \(\dfrac{3}{\sqrt{2}-1}+\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{3}+1}\)
c) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}\)
Tính :
a) A= \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}\)
b) B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
c) C= \(3-\sqrt{3-\sqrt{5}}\)
a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3-2}=1\)
b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`
`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`
`=sqrt{3-2}=1`
`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`
`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`
`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`
`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`
`c)C=3-sqrt{3-sqrt5}`
`=3-sqrt{(6-2sqrt5)/2}`
`=3-sqrt{(sqrt5-1)^2/2}`
`=3-(sqrt5-1)/sqrt2`
`=3-(sqrt{10}-sqrt2)/2`
`=(6-sqrt{10}+sqrt2)/2`
Giúp mình làm bài này với
Bài 1: Tính
A=\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
B=\(\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
C=\(\frac{1}{\sqrt{2}+2}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
Bài 2: Giải phương trình:
a. \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
b.\(\frac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)
c.\(5\sqrt{x-1}-\sqrt{36x-36}-\sqrt{9x-9}=\sqrt{8x+12}\)
Bài 3: Rút gọn
\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\times\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)
a. Tìm a để M>0
b. Tìm a để M<0
bài 1:
a) Rút gọn biểu thức : \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
b) giải phương trình sau: \(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
c) tính A= \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^3\)
d) rút gọn biểu thức B= \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)
c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)
d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)