Biết 2016a+2017b chia hết cho 11; 17a+18b chia hết cho 11 với a,b thuộc N
CMR:a chia hết cho 11, b chia hết cho 11
Cho a/b=c/d. CMR: \(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2017c-2018d}{2016a+2017b}\)
Ai lm đc mik cho 1 coin. Trước 10h 30'
Chứng minh (2016a-2017b)/(2017c+2018d)=(2016c-2017d)/(2017a+2018b) - Nguyễn Minh Hải
Bài 5: Cho \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{2016a+2017b}{2016a-2017b}=\frac{2016c+2017d}{2016c-2017d}\)
giải nhanh giúp với mai nộp rồi mình gấp lắm cảm ơn nhiều mình tick cho
TỈ lệ cần chứng minh
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a−2016b2015c−2016d =2016a+2017b2016c+2017d
Vì ab =cd ⇒ac =bd = 2015a2015c =2016b2016d =2016a2016c =2017b2017d
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)
CMR:
2015a- 2016b / 2016c+ 2017d = 2015c-2016d / 2016a+2017b
a/b=c/d.chung minh: 2015a-2016b/2016c+2017d=2015c-2016c/2016a+2017b
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015bk-2016b}{2016dk+2017d}=\dfrac{2015k-2016}{2016k+2017}\)
\(\dfrac{2015c-2016d}{2016a+2017b}=\dfrac{2015dk-2016d}{2016bk+2017b}=\dfrac{2015k-2016}{2016k+2017}\)
Do đó: \(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015c-2016d}{2016a+2017b}\)
Cho hai số dương a, b thỏa mãn ab a b > 2016a+2017b . Chứng minh:
a+b>\(\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm
cho a;b thuộc N*
Có 2016a2+a=2017b2+b2
CMR:a-b=d2
voi (a,b)=d và khác 1
Cho a, b thỏa mãn \(a^2++b^2=2\)
Tìm Mmin = \(\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}\)
\(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}=\dfrac{4}{4032+4034ab}\)
AM-GM: \(a^2+b^2\ge2ab\Leftrightarrow2ab\le2\Leftrightarrow ab\le1\Leftrightarrow4034ab\le4034\)
Hay: \(M\ge\dfrac{4}{4032+4034}=\dfrac{4}{8066}=\dfrac{2}{4033}\)
cho 2 số dương ab thõa mãn :a^2+b^2=2.Tìm giá trị nhỏ nhật của M=\(\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(M=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2016b^2+2017ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+2017.2ab}\)
\(M\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+2017\left(a^2+b^2\right)}=\frac{2}{4033}\)
Dấu "=" xảy ra khi \(a=b=1\)
Cho 2 số dương a,b thỏa mãn a2 + b2 = 2
Tính GTNN: \(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).
Áp dụng BĐT (*) vào bài toán, ta có:
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)
\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)
\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)
Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)
Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)
Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)
M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)
\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)
dấu "=" xảy ra khi và chỉ khi a=b=1