\(log_5\frac{3}{x^2}=log_35x\)
giải pt sau
\(\frac{1}{2}\log_5^{\left(x+5\right)}+\log_5^{\sqrt{x-3}}=\frac{1}{2}\log_5^{\left(2x+1\right)}\)
ĐK: \(x\ge3\)
ta có:
\(\log_5^{\left(x+5\right)^{\frac{1}{2}}}+\log_5^{\sqrt{x-3}}=\log_5^{\sqrt{2x+1}}\Rightarrow\log_5^{\sqrt{\left(x+5\right)\left(x-3\right)}}=\log_5^{\sqrt{2x+1}}\)
suy ra \(\sqrt{\left(x+5\right)\left(x-3\right)}=\sqrt{2x+1}\Rightarrow\left(x+5\right)\left(x-3\right)=2x+1\Leftrightarrow x^2+2x-15=2x+1\Leftrightarrow x^2=16\Rightarrow x=\pm4\)
mà \(x\ge3\)
suy ra x=4 là nghiệm của pt
giải các phương trình sau
a) \(\log_5\left(4x-3\right)=2\)
b) \(\log_2x^2=2\)
c) \(\log_5\left(2x+1\right)=\log_5\left(-2x+3\right)\)
d) \(\ln\left(x^2-6x+7\right)=\ln\left(x-3\right)\)
e) \(\log\left(5x-1\right)=log\left(4-2x\right)\)
a: ĐKXĐ: \(4x-3>0\)
=>x>3/4
\(log_5\left(4x-3\right)=2\)
=>\(log_5\left(4x-3\right)=log_525\)
=>4x-3=25
=>4x=28
=>x=7(nhận)
b: ĐKXĐ: \(x\ne0\)
\(log_2x^2=2\)
=>\(log_2x^2=log_24\)
=>\(x^2=4\)
=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-2\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{3}{2}\right\}\)
\(\log_52x+1=\log_5-2x+3\)
=>2x+1=-2x+3
=>4x=2
=>\(x=\dfrac{1}{2}\left(nhận\right)\)
d: ĐKXD: \(x\notin\left\{3\right\}\)
\(ln\left(x^2-6x+7\right)=ln\left(x-3\right)\)
=>\(x^2-6x+7=x-3\)
=>\(x^2-7x+10=0\)
=>(x-2)(x-5)=0
=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\notin\left\{\dfrac{1}{5};2\right\}\)
\(log\left(5x-1\right)=log\left(4-2x\right)\)
=>5x-1=4-2x
=>7x=5
=>\(x=\dfrac{5}{7}\left(nhận\right)\)
Tìm tập xác định của hàm số :
\(y=\sqrt{\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)}\)
Điều kiện :
\(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)
\(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)
\(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)
\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)
Vậy tập xác định là D = [-2;-1) U (2;7]
Bài tập 3: Giải phương trình.
a, \(\log_52x-\log_5-x-2=0\)
b, \(9^x-3.3^x+2=0\)
Bạn coi lại đề câu a, chỗ \(\log_5-x\) đó
b.
\(\Leftrightarrow9^x-3^x-2.3^x-2=0\)
\(\Leftrightarrow3^x\left(3^x-1\right)-2\left(3^x-1\right)=0\)
\(\Leftrightarrow\left(3^x-2\right)\left(3^x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=2\\3^x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\log_32\\x=0\end{matrix}\right.\)
↑\(\log_2X+\log_3\left(X+1\right)< \log_4\left(X+2\right)+\log_5\left(X+3\right)\)
Tính giá trị biểu thức : \(E=12\log^2_{3^{-2}}\left(3\sqrt{3}\right)+9\log_{8\sqrt{8}}\sqrt{32}-12\log_5\frac{1}{125}\)
\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)
Giải phương trình
\(\log_2x+\log_3\left(x+1\right)=\log_4\left(x+2\right)+\log_5\left(x+3\right)\)
Điều kiện x>0. Nhận thấy x=2 là nghiệm.
Nếu x>2 thì
\(\frac{x}{2}>\frac{x+2}{4}>1\); \(\frac{x+1}{3}>\frac{x+3}{5}>1\)
Suy ra
\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)
\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)
Suy ra vế trái < vế phải, phương trình vô nghiệm.
Đáp số x=2
Giải hệ phương trình sau :
\(\begin{cases}\left(x+y\right)3^{y-x}=\frac{5}{27}\\3\log_5\left(x+y\right)=x-y\end{cases}\) \(\left(x,y\in R\right)\)
Điều kiện \(x+y>0\)
Từ hệ phương trình \(\Leftrightarrow\begin{cases}5^{\frac{x-y}{3}}.3^{y-x}=\frac{5}{27}\\x+y=5^{\frac{x-y}{3}}\end{cases}\) \(\Leftrightarrow\begin{cases}\left(\frac{\sqrt[3]{5}}{3}\right)^{x-y}=\left(\frac{\sqrt[3]{5}}{3}\right)^3\\x+y=5^{\frac{x-y}{3}}\end{cases}\) \(\Leftrightarrow\begin{cases}x-y=3\\x+y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=4\\y=1\end{cases}\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(4;1\right)\)
1, \(log_{5x}\dfrac{5}{x}+log^{2_{ }}_5x=1\)
2, \(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)
3, \(2\left(log_3x^{ }\right)^2=log_3x.log_3\left(\sqrt{2x+1}-1\right)\)
- giải hộ 3 phương trình trên với
1/ ĐKXĐ: \(x>0\)
\(log_{5x}5-log_{5x}x+log_5^2x=1\)
\(\Leftrightarrow\dfrac{1}{log_55x}-\dfrac{1}{log_x5x}+log_5^2x=1\)
\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{1}{1+log_x5}+log_5^2x-1=0\)
\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{log_5x}{1+log_5x}+\left(log_5x-1\right)\left(log_5x+1\right)=0\)
\(\Leftrightarrow\dfrac{1-log_5x}{1+log_5x}-\left(1-log_5x\right)\left(1+log_5x\right)=0\)
\(\Leftrightarrow\left(1-log_5x\right)\left(\dfrac{1}{1+log_5x}-\left(1+log_5x\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\\dfrac{1}{1+log_5x}=1+log_5x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\1+log_5x=1\\1+log_5x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=\dfrac{1}{25}\end{matrix}\right.\)
2/ ĐKXĐ: \(x>0\)
\(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)
\(\Leftrightarrow log_5\left(5^x-1\right).log_{5^2}5\left(5^x-1\right)=1\)
\(\Leftrightarrow log_5\left(5^x-1\right)\left(1+log_5\left(5^x-1\right)\right)=2\)
\(\Leftrightarrow log_5^2\left(5^x-1\right)+log_5\left(5^x-1\right)-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_5\left(5^x-1\right)=1\\log_5\left(5^x-1\right)=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x-1=5\\5^x-1=\dfrac{1}{25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x=6\\5^x=\dfrac{26}{25}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=log_56\\x=log_5\dfrac{26}{25}\end{matrix}\right.\)
3/ ĐKXĐ: \(x>0\)
\(2log_3^2x-log_3x.log_3\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow log_3x\left(2log_3x-log_3\left(\sqrt{2x+1}-1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_3x=0\Rightarrow x=1\\2log_3x-log_3\left(\sqrt{2x+1}-1\right)=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(log_3x^2=log_3\left(\sqrt{2x+1}-1\right)\Leftrightarrow x^2=\sqrt{2x+1}-1\)
\(\Leftrightarrow x^2+1=\sqrt{2x+1}\Leftrightarrow x^4+2x^2+1=2x+1\)
\(\Leftrightarrow x^4+2x^2-2x=0\Leftrightarrow x\left(x^3+2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x^3+2x-2=0\end{matrix}\right.\) ????
Pt bậc 3 kia có nghiệm rất xấu, chỉ giải được bằng công thức Cardano mà bậc phổ thông không học, nên bạn có chép đề sai không vậy?