Tìm số nguyên x, biết:
d) (2x2 - 10x + 5)\(⋮\)(x - 5)
tìm x biết:d)26-(x-5)=32
e)5./5/=75
f)(-3)./x+1/=-9
d ) 26 - ( x - 5 ) = 32
x - 5 = 26 - 32
x - 5 = - 6
x = - 6 + 5
x = - 1
Vậy x = - 1
e ) 5 . l x l = 75
l x l = 75 : 5
l x l = 15
=> x thuộc { - 15 ; 15 }
Vậy x thuộc { - 15 ; 15 }
Tìm số nguyên x để số hữu tỉ B = x − 10 x − 5 là số nguyên
B = x − 10 x − 5 = 1 − 5 x − 5 . Làm tương tự câu a ta được x ∈ {4;6;0;10}
Tìm x biết
a,(x+4)(3x-5)=0
b, x2-2x+10x-20=0
c, 2x2+7x+3=0
GIÚP MÌNH VỚI NHA
Tìm x:
a) 5x(x-2)+(2-x)=0
b) x(2x-5)-10x+25=0
c) \(\dfrac{25}{16}\)-4x2+4x-1=0
d)x4+2x2-8=0
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a) \(5x\left(x-2\right)+\left(2-x\right)=0\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(x\left(2x-5\right)-10x+25=0\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{5}{2}\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(x-\dfrac{9}{8}\right)\left(x+\dfrac{1}{8}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{9}{8}=0\\x+\dfrac{1}{8}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=-\dfrac{1}{8}\end{matrix}\right.\)
d) \(x^4+2x^2-8=0\)
\(\Rightarrow\left(x^4+2x^2+1\right)-9=0\)
\(\Rightarrow\left(x^2+1\right)^2-3^2=0\)
\(\Rightarrow\left(x^2+1-3\right)\left(x^2+1+3\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow x=\pm\sqrt{2}\)
giải phương trình : 2x2-5\(\sqrt{x^2_{ }-5x+7}\) =10x-17
2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7 ≥ 0
\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17
2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0
(2\(x^2\) - 10\(x\) + 14) - 5\(\sqrt{x^2-5x+7}\) + 3 = 0
2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0
Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 = \(\dfrac{3}{2}\)
TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\) = 1
⇒ \(x^2\) - 5\(x\) + 7 = 1
\(x^2\) - 5\(x\) + 6 = 0
\(\Delta\) = 25 - 24 = 49
\(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) = 3;
\(x_2\) = \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\) = 2;
TH2 y = \(\dfrac{3}{2}\)
\(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)
\(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)
4\(x^2\) - 20\(x\) + 28 = 9
4\(x^2\) - 20\(x\) + 19 = 0
\(\Delta'\) = 102 - 4.19
\(\Delta'\) = 24
\(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)
\(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)
8 - 5\(\sqrt{6}\)
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}
2 - 5 = 10 - 17 Đk - 5 + 7 ≥ 0
- 2. + + = ( - )2 + > 0 ∀
ta có: 2 - 5 = 10 - 17
2 - 5 - 10 + 17 = 0
(2 - 10 + 14) - 5 + 3 = 0
2.( - 5 + 7) - 5. + 3 = 0
Đặt = y > 0 ta có:
2y2 - 5y + 3 = 0
2 + (-5) + 3 = 0
⇒ y1= 1; y2 =
TH1 y = 1 ⇒ = 1
⇒ - 5 + 7 = 1
- 5 + 6 = 0
= 25 - 24 = 49
= = 3;
= = 2;
TH2 y =
=
- 5 + 7 =
4 - 20 + 28 = 9
4 - 20 + 19 = 0
= 102 - 4.19
= 24
= =
= =
8 - 5
Từ các lập luận trên kết luận phương trình có tập nghiệm là:
S = {8 - 5; 2 ; 3; 8 + 5}
Tìm các số nguyên dương x,n và số nguyên tố p thỏa mãn 2x^3 + x^2 + 10x + 5 = 2p^n
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12
2.a) (ko phân tích được, bạn coi lại nhé)
b) phần còn lại của chứng minh là gì thế bạn?
a) Tìm số nguyên âm x để đa thức:
f(x)= -x4+2x2-3x+5 chia hết cho g(x)= x-1
b) Tìm giá trị nhỏ nhất của biểu thức:
B= x2+5y2-2xy+4x-4y-2020
\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12 chia hết cho 6