Cho phương trình \(x^2-m^2x+2m+2=0\). Tìm m nguyên dương để phương trình có 2 nghiệm nguyên
Cho phương trình: x^2 - m^2x + 2m + 2 = 0. Tìm m ∈ Z để phương trình có nghiệm nguyên
cho phương trình:
mx - 3 = 2x =2m
1) tìm m để phương trình vô nghiệm, phương trình có nghiệm
2) khi phương trình có nghiệm duy nhất :
a) tìm m nguyên để phương trình có nghiệm nguyên
b) tìm m để phương trình có nghiệm x>0
c) tìm m để phương trình có nghiệm x<0
Xét phương trình \(x^2-m^2x+2m+2=0\left(1\right)\)(ẩn x). Tìm các giá trị nguyên dương của m để phương trình (1) có nghiệm nguyên
cho phương trình \(x^2+\left(2m-5\right)x-n=0\) ( x là ẩn số)
với m=5 , tìm n nguyên nhỏ nhất để phương trình có nghiệm dương
Cho phương trình: (2x-m) /(x-2)+ (x-1) /(x+2)= 3.Tìm m nguyên để phương trình có nghiệm dương.
`x^2 -2(1-m)x-2m-5=0` . Tìm m nguyên để phương trình có 2 nghiệm trái dấu mà nghiệm dương lớn hơn giá trị tuyệt đối nghiệm âm
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{5}{2}< m< 1\)
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
Cho phương trình: (2x-m) /(x-2)+ (x-1) /(x+2)= 3. Tìm m nguyên để phương trình có nghiệm dương.
Help me ^_^!!!
Cho phương trình:
\(x^2+\left(2m+1\right)x-n+3=0\)(m, n là tham số)
a) Xác định m, n để phương trình có 2 nghệm -3 và -2
b) Trong TH m=2 tìm số nguyên dương n bé nhất để phương trình đã cho có nghiệm dương
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha