Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Thúy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 4 2023 lúc 8:33

a: d'//d

=>d': 3x-y+c=0

Thay x=3 và y=-2 vào (d'), ta được:

c+9+2=0

=>c=-11

b: x=6+21t và y=1-3t

=>(d2) đi qua A(6;1) và có VTCP là (21;-3)=(7;-1)

=>VTPT là (1;7)

M(4;-14)

Phương trình (d2) là:

1(x-6)+7(y-1)=0

=>x-6+7y-7=0

=>x+7y-13=0

=>(d3): x+7y+c=0

Thay x=4 và y=-14 vào (d3),ta được:

c+4-98=0

=>c=94

Phương Ngọc Nguyễn
Xem chi tiết
Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 11:43

1: Để hai đường song song thì m+3=2

hay m=-1

Bạn ơi, bạn kí hiệu lại đi bạn. Khó hiểu quá

Hải Đăng
Xem chi tiết
Nguyễn Ngọc Lộc
20 tháng 4 2021 lúc 17:33

- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)

- Để đường thẳng d và đường tròn không có điểm chung 

\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)

\(\Leftrightarrow0,8m^2-6m+8,8>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)

Vậy ...

 

Quý Nguyễn
Xem chi tiết
Mai Trung Hải Phong
23 tháng 4 2023 lúc 19:10

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

Quý Nguyễn
Xem chi tiết
Gamer Bee
23 tháng 4 2023 lúc 22:28
Quang Pham
23 tháng 4 2023 lúc 22:30

Tên quen ta :))

Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 23:14

a: (C): x^2+y^2-2x+6y-2=0

=>x^2-2x+1+y^2+6y+9-12=0

=>(x-1)^2+(y+3)^2=12

=>I(1;-3);\(R=2\sqrt{3}\)

b: I(1;-3); A(-4;1)

=>\(IA=\sqrt{\left(-4-1\right)^2+\left(1+3\right)^2}=\sqrt{34}\)

(C1): \(\left(x-1\right)^2+\left(y+3\right)^2=34\)

Quý Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 8:39

loading...

30.Đặng Thanh Thiếc 10A1...
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2022 lúc 22:47

Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)

Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)

\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)

Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)

Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:

\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)

Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)

A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)

\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt

Phương trình AQ:

\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)

Lê Thanh Hương
Xem chi tiết
Akai Haruma
4 tháng 2 2023 lúc 13:52

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

Nguyễn Quốc Anh
Xem chi tiết