Tìm \(L=lim\left(\frac{1}{1}+\frac{1}{1+2}+...+\frac{1}{1+2+...+n}\right)\)
Tại sao làm như vậy là sai nhỉ : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{\frac{1}{n}+\frac{2}{n}+...+\frac{1}{n^2}}{1+\frac{1}{n^2}}=\frac{0}{1}=0\)
phải làm theo vầy mới đúng : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{n\left(n+1\right)}{2\left(n^2+1\right)}=\lim\limits_{ }\frac{1+\frac{1}{n}}{2+\frac{1}{n}}=\frac{1}{2}\)
Mình mới học nên ko hiểu lắm, có ai giúp vớiiiiiiiiiii
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
a) \(\lim\limits3=3\) vì \(3\) là hằng số.
Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).
b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).
17/lim\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\)
18/lim\(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\left(\left|a\right|< 1;\left|b\right|< 1\right)\)
19/lim\(\frac{1-2+3-4+...+\left(2n-1\right)-2n}{2n+1}\)
Tìm các giới hạn sau:
a) \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right)\);
b) \(\lim \left( {\frac{{1 - 4n}}{n}} \right)\).
a) Đặt \({u_n} = 2 + {\left( {\frac{2}{3}} \right)^n} \Leftrightarrow {u_n} - 2 = {\left( {\frac{2}{3}} \right)^n}\).
Suy ra \(\lim \left( {{u_n} - 2} \right) = \lim {\left( {\frac{2}{3}} \right)^n} = 0\)
Theo định nghĩa, ta có \(\lim {u_n} = 2\). Vậy \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right) = 2\)
b) Đặt \({u_n} = \frac{{1 - 4n}}{n} = \frac{1}{n} - 4 \Leftrightarrow {u_n} - \left( { - 4} \right) = \frac{1}{n}\).
Suy ra \(\lim \left( {{u_n} - \left( { - 4} \right)} \right) = \lim \frac{1}{n} = 0\).
Theo định nghĩa, ta có \(\lim {u_n} = - 4\). Vậy \(\lim \left( {\frac{{1 - 4n}}{n}} \right) = - 4\)
tìm các giới hạn
a)lim(\(\sqrt{n+1}-\sqrt{n}\))
b)lim\(\left(\sqrt{n+5n+1}-\sqrt{n^2-n}\right)\)
c)lim\(\left(\sqrt{3n^2+2n-1}-\sqrt{3n^2-4n+8}\right)\)
d)lim\(\frac{2^n+6^n-4^{n+1}}{3^n+6^{n+1}}\)
e)lim\(\frac{3^n-4^n+5^n}{3^n+4^n-5^n}\)
f)lim\(\frac{1+3+5+.....+\left(2n+1\right)}{3n^2+4}\)
g)lim[\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n\left(n+1\right)}\)]
h)lim\(\frac{1^2+2^2+3^2+.....+n^2}{n\left(n+1\right)\left(n+2\right)}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
tìm \(lim\frac{1+\frac{2}{3}+\left(\frac{2}{3}\right)^2+...+\left(\frac{2}{3}\right)^n}{1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^n}\)
Theo công thức tổng CSN:
\(1+\frac{2}{3}+...+\left(\frac{2}{3}\right)^n=\frac{1-\left(\frac{2}{3}\right)^{n+1}}{1-\frac{2}{3}}=3-3.\left(\frac{2}{3}\right)^{n+1}\)
\(1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^n=\frac{1-\left(\frac{1}{5}\right)^{n+1}}{1-\frac{1}{5}}=\frac{5}{4}-\frac{5}{4}\left(\frac{1}{5}\right)^{n+1}\)
\(\Rightarrow lim\frac{3-3\left(\frac{2}{3}\right)^{n+1}}{\frac{5}{4}-\frac{5}{4}\left(\frac{1}{5}\right)^{n+1}}=\frac{3}{\frac{5}{4}}=\frac{12}{5}\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
tìm giới hanjn
1) lim \(\frac{\left(-1\right)^n}{n-3}\)
2) lim \(\frac{n\left(sin\left(pi.n^2\right)\right)}{n^2+3n-2}\)
1) lim\(\frac{\left(-1\right)^n}{n-3}\)
ta có: \(\left|\frac{\left(-1\right)^n}{n-3}\right|=\frac{1}{n-3}< \frac{1}{n-4}\)
lim \(\frac{1}{n-4}=lim\frac{\frac{1}{n}}{1-\frac{4}{n}}=\frac{lim0}{1}=0\)
2) lim\(\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\)
ta có : \(\left|\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\right|\)<=\(\frac{n}{n^2+3n-2}\)
=> lim\(\frac{n}{n^2+3n-2}=0\)
=>lim\(\frac{nsin\left(pi.n^2\right)}{n^2+3n-2}\)=0
\(\lim\limits\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{n^2}\right)\)
Ta có \(1-\frac{1}{k^2}=\frac{\left(k-1\right)\left(k+1\right)}{k^2}\)
=> \(limS=lim\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{\left(n-1\right)\left(n+1\right)}{n^2}=lim\frac{n+1}{2n}=\frac{1}{2}\)