tìm x ∈ N* để \(4x^3+14x^2+9x-6\) là số chính phương
Tìm x nguyên dương để \(4x^3+14x^2+9x-6\)là số chính phương
Vì \(4x^3+14x^2+9x-6\) là số chính phương nên ta có \(4x^3+14x^2+9x-6=k^2\) với \(k\inℕ\)
Ta có \(4x^3+14x^2+9x-6=\left(x+2\right)\left(4x^2+6x-3\right)\)nên ta có \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)
Đặt \(\left(x+2;4x^2+6x-3\right)=d\)với \(d\inℕ^∗\)
Ta có \(x+2⋮d\Rightarrow\left(x+2\right)\left(4x-2\right)⋮d\Rightarrow4x^2+6x-4⋮d\)
Ta lại có \(4x^2+6x-3⋮d\Rightarrow\left(4x^2+6x-3\right)-\left(4x^2+6x-4\right)=1⋮d\)
\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))
Vậy \(\left(x+2;4x^2+6x-3\right)=1\)
mà \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)nên ta có:
x + 2 và 4x2 + 6x - 3 là số chính phương\(\Rightarrow\hept{\begin{cases}x+2=a^2\\4x^2+6x-3=b^2\end{cases}}\left(a,b\right)\inℕ^∗\)
Vì x > 0 nên ta có \(4x^2< b^2< 4x^2+12x+9\Leftrightarrow\left(2x\right)^2< b^2< \left(2x+3\right)^2\)
Vì b lẻ nên \(b^2=\left(2x+1\right)^2\Leftrightarrow4x^2+6x-3=4x^2+4x+1\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2 thì \(4x^3+14x^2+9x-6\)là số chính phương
Đây nha bn
http://olm.vn/hoi-dap/detail/97831197795.html
tìm x nguyên dương để biểu thức 4x3+14x2+9x-6 là 1 số chính phương
Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )
Mà ( x + 2 ; 4x2 + 6x - 3 ) = 1 ( tự c/m ) nên để 4x3 + 14x2 + 9x - 6 là SCP
\(\Rightarrow\)x + 2 và 4x2 + 6x - 3 là SCP
đặt x + 2 = a2 ; 4x2 + 6x - 3 = b2 \(\Rightarrow\)x = a2 - 2
thay vào ta có :
4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2
\(\Rightarrow\)16a4 - 40a2 + 4= 4b2 \(\Rightarrow\)( 4a2 - 2b - 5 ) ( 4a2 + 2b - 5 ) = 21
Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5
\(\Rightarrow\)lập bảng làm .... kết luận x = 2
Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
1,Tìm số thực x để 3 số \(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\)là số nguyên
2, Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
-Tìm các số nguyên k để \(k^4-8k^3+23k^2-26k+10\) là số chính phương
-Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
\(A=k^4-8k^3+23k^2-26k+10\)
\(=k^2\left(k^2-2k+1\right)-6k\left(k^2-2k+1\right)+10\left(k^2-2k+1\right)\)
\(=\left(k^2-6k+10\right)\left(k-1\right)^2\)
+ TH1 : \(\left(k-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}A=0\\k=1\left(TM\right)\end{matrix}\right.\)
+ TH2 : \(\left(k-1\right)^2\ne0\)
=> A là số cp \(\Leftrightarrow k^2-6k+10\) là số cp
\(\Leftrightarrow k^2-6k+10=n^2\) ( \(n\in N\)* )
\(\Leftrightarrow\left(k-3\right)^2+1=n^2\)
\(\Leftrightarrow\left(n-k+3\right)\left(n+k-3\right)=1\)
Xét các TH rồi tìm đc \(k=3\)
Tìm x nguyên dương để \(4x^3+14x^2+9x-6=0\)
4x3+8x2+6x2+12x-3x-6=0
=> 4x2(x+2)+6x(x+2)-3(x+2)=0
=> (4x2+6x-3)(x+2)=0
=> \(\left[{}\begin{matrix}4x^2+6x-3=0\\x+2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(2x+\dfrac{3}{2}\right)^2=\dfrac{21}{4}\\x=-2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\sqrt{21}-3}{4}\\x=\dfrac{-\sqrt{21}-3}{4}\end{matrix}\right.\\x=-2\end{matrix}\right.\)
Tìm x ∈ N* sao cho 4x3+14x2+9x+16 là số chính phương
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Tìm x thuộc Z để
x^2+4x+12 là số chính phương
x^2-8x+12 là số chính phương
x^2+x+1 là số chính phương
x^2+3 là số chính phương