Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nothing
Xem chi tiết
VÕ THỊ ANH THƯ
24 tháng 3 2022 lúc 21:20

xl mình ko làm đc

Khách vãng lai đã xóa
Yen Nhi
24 tháng 3 2022 lúc 22:35

`Answer:`

undefined

a. Vì `\triangleABC` vuông tại `A` nên theo định lí Pytago, ta có:

\(AB^2=BC^2-AC^2\Leftrightarrow AB^2=13^2-12^2\Leftrightarrow AC^2=169-144=25\Leftrightarrow AC=5cm\)

b. Xét `\triangleABD` và `\triangleEBD:`

`BD` chung

`BA=BE`

`\hat{ABD}=\hat{EBD}`

`=>\triangleABD=\triangleEBD(c.g.c)`

c. Theo phần b. `\triangleABD=\triangleEBD`

`=>\hat{BAD}=\hat{BED}=90^o`

`=>DE⊥BC`

d. Xét `\triangleADF` và `triangleEDC:`

`AD=DE`

`\hat{DAF}=\hat{DEC}=90^o`

`\hat{ADF}=\hat{EDC}`

`=>\triangleADF=\triangleEDC(g.c.g)`

`=>AF=BC`

 
Khách vãng lai đã xóa
Ngocanh168 Sv2
Xem chi tiết
응 우옌 민 후엔
3 tháng 5 2019 lúc 10:22

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

T.Ps
3 tháng 5 2019 lúc 10:50

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

Đỗ Thị Dung
3 tháng 5 2019 lúc 11:50

Bài 1: a, áp dụng định lí py-ta-go vào t.giác vuông ta có: 

                      \(BC^2=AC^2+AB^2\)

=> \(AC^2=BC^2-AB^2\)

=> \(AC^2\)=225-81=144

=>AC=12 (cm)

vậy AC=12 cm

b, xét 2 tam giác vuông ABD và EBD có: 

           BD cạnh chung

          BA=BE(gt)

=> \(\Delta ABD=\Delta EBD\)(cạnh huyền-cạnh góc vuông)

c, ta có: \(\Delta ADH=\Delta EDC\)(cạnh góc vuông-góc nhọn)

=> AH=EC(2 cạnh tương ứng)

Mà AB=EB(câu b) => HB=CB

=> \(\Delta HBC\)cân tại B

d, trong tam giác vuông ADH có: AD<DH(vì cạnh huyền lớn hơn cạnh góc vuông) mà DH=DC=> DC>AD hay AD<DC đpcm

A B C E D d 9cm 15cm H

Thùy Linh
Xem chi tiết
Tẫn
26 tháng 4 2019 lúc 16:21

a) AC = ? 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:

AC2 = AB2 + BC2

        = 52 + 122 = 25 + 144 = 169 

⇒ AC = 13 (cm)

b) ΔEAD cân

Xét hai tam giác vuông ABE và DBE có:

AB = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)

⇒ EA = ED (hai cạnh tương ứng)

⇒ ΔEAD cân tại E.

c) K là trung điểm của DC.

Ta có: BE = 4, BC = 12 

⇒ BE = 1/3 BC 

Hay E là trọng tâm của ΔACD.

⇒ AE là đường trung tuyến ứng với cạnh DC

⇒ K là trung điểm của DC.

d) AD < 4EK 

Ta có: EA > AB, ED > BD

Mà AD = AB + BD,     AE = ED (câu b)

⇒ 2AE > AD 

Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA 

Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

Tẫn
26 tháng 4 2019 lúc 16:33

B A D C E

Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 21:46

a) Xét \(\Delta ABD\) và \(\Delta EBD\) ta có:

\(BA = BE\) (gt)

\(\widehat {{\rm{ABD}}} = \widehat {{\rm{ EBD}}}\) (do \(BD\) là phân giác)

\(BD\) chung

Suy ra \(\Delta ABD = \Delta EBD\) (c-g-c)

b) Vì \(\Delta ABD = \Delta EBD\) (cmt)

Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{BED}}} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\)

Mà \(AH \bot BC\) (gt)

Suy ra \(AH\) // \(DE\)

Suy ra \(ADEH\) là hình thang

Mà \(\widehat {{\rm{DEB}}} = 90\) (cmt)

Suy ra \(ADEH\) là hình thang vuông

c) 

Gọi \(K\) là giao điểm của \(AE\) và \(AD\)

Suy ra \(BK\) là phân giác của \(\widehat {{\rm{ABC}}}\)

Mà \(\Delta ABE\) cân tại \(B\) (do \(BA = BE\) )

Suy ra \(BK\) cũng là đường cao

Xét \(\Delta ABE\) có hai đường cao \(BK\) và \(AH\) cắt nhau tại \(I\)

Suy ra \(I\) là trực tâm của \(\Delta ABE\)

Suy ra \(EF \bot AB\)

Mà \(AC \bot AB\) (do \(\Delta ABC\) vuông tại \(A\))

Suy ra \(AC\) // \(EF\)

Suy ra \(ACEF\) là hình thang

Mà \(\widehat {{\rm{CAE}}} = 90^\circ \)(gt)

Suy ra \(ACEF\) là hình thang vuông

Nguyễn Đắc Phú
Xem chi tiết
Nguyễn Đắc Phú
7 tháng 4 2020 lúc 11:38

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

Khách vãng lai đã xóa
Lê  Anh  Quân
8 tháng 4 2020 lúc 19:41

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Khách vãng lai đã xóa
Tran Le Khanh Linh
15 tháng 4 2020 lúc 7:19

a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2

thay AB=3cm, AC=4cm va BC=5cm, ta có:

32+42=52

=> 9+16=25 (luôn đúng)

=> đpcm

b) có D nằm trên tia đối của tia AC

=> D,A,C thằng hàng và A nằm giữa D và C

=> DA+AC=DC

=> DA+4=6

=>DA=2(cm)

áp dụng định lý Pytago vào tam giác ABD vuông tại A có:

AB2+AD2=BD2

=> 32+22=BD2

=> 9+4=BD2

=> \(BD=\sqrt{13}\)(cm)

Khách vãng lai đã xóa
Lê Phương Mai
Xem chi tiết
Etermintrude💫
5 tháng 5 2021 lúc 7:30

undefinedundefined

hồng phạm
Xem chi tiết
hồng phạm
16 tháng 12 2021 lúc 20:44

cứu với mình cần gấp huhu

Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 20:44

a: Xét ΔABD và ΔEBD có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Nguyễn Công Huy Hoàng
16 tháng 12 2021 lúc 20:49

a: Xét ΔABD và ΔEBD có 

BA=BE

ˆABD=ˆEBDABD^=EBD^

BD chung

Do đó: ΔABD=ΔEBD

Anh Nguyễn
Xem chi tiết

Sửa đề: ΔABC vuông tại B

a: Ta có: ΔBAC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=5^2-3^2=16\)

=>\(BC=\sqrt{16}=4\left(cm\right)\)

b: Sửa đề: ΔADE vuông tại E

Xét ΔBAD và ΔEAD có

AB=AE
\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔBAD=ΔEAD

=>\(\widehat{ABD}=\widehat{AED}\)

mà \(\widehat{ABD}=90^0\)

nên \(\widehat{AED}=90^0\)

=>ΔAED vuông tại E

c: Sửa đề: Kẻ BH vuông góc AC

Xét ΔABE có AB=AE

nên ΔABE cân tại A

Ta có: \(\widehat{CBE}+\widehat{ABE}=\widehat{ABC}=90^0\)

\(\widehat{HBE}+\widehat{AEB}=90^0\)(ΔHEB vuông tại H)

mà \(\widehat{ABE}=\widehat{AEB}\)(ΔABE cân tại A)

nên \(\widehat{CBE}=\widehat{HBE}\)

=>BE là phân giác của góc HBC

d:

Ta có: \(\widehat{BOD}=\widehat{AOH}\)(hai góc đối đỉnh)

\(\widehat{AOH}+\widehat{DAC}=90^0\)(ΔHAO vuông tại H)

Do đó: \(\widehat{BOD}+\widehat{DAC}=90^0\)

Ta có: \(\widehat{BDO}+\widehat{BAD}=90^0\)(ΔBAD vuông tại A)

\(\widehat{BOD}+\widehat{DAC}=90^0\)

mà \(\widehat{BAD}=\widehat{DAC}\)

nên \(\widehat{BDO}=\widehat{BOD}\)

=>ΔBDO cân tại B

Hoa Thiên Cốt
Xem chi tiết

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Khách vãng lai đã xóa
Lưu Phương Anh
Xem chi tiết