Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô minh định
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2020 lúc 7:59

\(\Rightarrow\left\{{}\begin{matrix}S_4=40\\S_8=3280\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{u_1\left(q^4-1\right)}{q-1}=40\\\frac{u_1\left(q^8-1\right)}{q-1}=3280\end{matrix}\right.\)

Chia dưới cho trên ta được:

\(\frac{q^8-1}{q^4-1}=82\Leftrightarrow q^4+1=82\Rightarrow q^4=81\Rightarrow q=\pm3\)

- Với \(q=3\Rightarrow u_1=\frac{40\left(q-1\right)}{q^4-1}=1\)

\(\Rightarrow S_5=\frac{u_1\left(q^5-1\right)}{q-1}=121\)

- Với \(q=-3\Rightarrow u_1=\frac{40\left(q-1\right)}{q^4-1}=-2\)

\(\Rightarrow S_5=-122\)

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
24 tháng 5 2017 lúc 13:57

Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: 1u_1 và d.
Ta có:
15
4111\left\{{}\begin{matrix}u_1+2u_5=0\\S_4=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+2.\left(u_1+4d\right)=0\\\dfrac{\left[2u_1+3d\right].4}{2}=14\end{matrix}\right.11\Leftrightarrow\left\{{}\begin{matrix}3u_1+8d=0\\2u_1+3d=7\end{matrix}\right.1\Leftrightarrow\left\{{}\begin{matrix}u_1=8\\d=-3\end{matrix}\right..

Bùi Thị Vân
24 tháng 5 2017 lúc 14:15

b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\)\(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).

Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:37

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2023 lúc 19:24

1:

\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)

2:

\(u2=u1\cdot q\)

=>\(q=\dfrac{3}{-1}=-3\)

\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)

\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 11:30

 

a)

\(\begin{array}{l}\left\{ \begin{array}{l}5{u_1} + 10{u_5} = 0\\{S_4} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10\left( {{u_1} + 4{\rm{d}}} \right) = 0\\\frac{{4\left( {2{u_1} + 3{\rm{d}}} \right)}}{2} = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{u_1} + 10{u_1} + 40{\rm{d}} = 0\\2\left( {2{u_1} + 3{\rm{d}}} \right) = 14\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}15{u_1} + 40{\rm{d}} = 0\\2{u_1} + 3{\rm{d}} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 8\\d =  - 3\end{array} \right.\end{array}\)

Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 8\) và công sai \(d =  - 3\).

b)

\(\begin{array}{l}\left\{ \begin{array}{l}{u_7} + {u_{15}} = 60\\u_4^2 + u_{12}^2 = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + 6{\rm{d}}} \right) + \left( {{u_1} + 14{\rm{d}}} \right) = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 6{\rm{d}} + {u_1} + 14{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 20{\rm{d}} = 60\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 10{\rm{d}} = 30\left( 1 \right)\\{\left( {{u_1} + 3{\rm{d}}} \right)^2} + {\left( {{u_1} + 11{\rm{d}}} \right)^2} = 1170\left( 2 \right)\end{array} \right.\end{array}\)

\(\left( 1 \right) \Leftrightarrow {u_1} = 30 - 10{\rm{d}}\) thế vào (2) ta được:

\(\begin{array}{l}{\left( {30 - 10{\rm{d}} + 3{\rm{d}}} \right)^2} + {\left( {30 - 10{\rm{d}} + 11{\rm{d}}} \right)^2} = 1170 \Leftrightarrow {\left( {30 - 7{\rm{d}}} \right)^2} + {\left( {30 + {\rm{d}}} \right)^2} = 1170\\ \Leftrightarrow 900 - 420{\rm{d}} + 49{{\rm{d}}^2} + 900 + 60{\rm{d}} + {d^2} = 1170 \Leftrightarrow 50{{\rm{d}}^2} - 360{\rm{d}} + 630 = 0\\ \Leftrightarrow 5{{\rm{d}}^2} - 36{\rm{d}} + 63 = 0 \Leftrightarrow \left[ \begin{array}{l}d = 3\\d = \frac{{21}}{5}\end{array} \right.\end{array}\)

Với \(d = 3 \Leftrightarrow {u_1} = 30 - 10.3 = 0\).

Với \(d = \frac{{21}}{5} \Leftrightarrow {u_1} = 30 - 10.\frac{{21}}{5} =  - 12\).

Vậy có hai cấp số cộng \(\left( {{u_n}} \right)\) thoả mãn:

‒ Cấp số cộng có số hạng đầu \({u_1} = 0\) và công sai \(d = 3\).

‒ Cấp số cộng có số hạng đầu \({u_1} =  - 12\) và công sai \(d = \frac{{21}}{5}\).

Minh Khánh
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 21:07

Tất cả các bài đều là dạng hệ đơn giản giống nhau, trừ câu l đề có vấn đề ra thì đều giải một cách đơn giản bằng phương pháp cộng đại số được, ko có gì khó cả.

Ví dụ câu a:

\(\left\{{}\begin{matrix}80x+81y=12,1\\x+y=0,15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}80x+81y=12,1\\-81x-81y=-12,15\end{matrix}\right.\)

Cộng hai pt lại:

\(-x=-\frac{1}{20}\Rightarrow x=\frac{1}{20}\)

Thay vào pt \(x+y=0,15\Rightarrow y=0,15-x=\frac{1}{10}\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\frac{1}{20};\frac{1}{10}\right)\)

Các câu khác làm tương tự

bùi việt hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 8:09

1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)

2: x>1

4: \(x\in\left(-2;+\infty\right)\)

vung nguyen thi
Xem chi tiết
Nguyễn Huy Thắng
14 tháng 11 2017 lúc 22:21

Đặt S=x+y;P=xy giải ra :V

My Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2022 lúc 20:48

a: \(x\in\left(-1;2\right)\)

b: \(x\in[8;10)\cup\left[25;30\right]\)

c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)