Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tất Đạt
Xem chi tiết
Namikage Athena
Xem chi tiết
Trần Thị Mĩ Duyên
26 tháng 2 2020 lúc 14:15

Ta có \(\left(\frac{1}{2}x+y\right)\left(...\right)=\frac{x^3+8y^3}{8}\)

\(\Leftrightarrow8\left(\frac{1}{2}x+y\right)\left(...\right)=x^3-8y^3\)

\(\Leftrightarrow4\left(x+2y\right)\left(...\right)=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

\(\Rightarrow4\left(...\right)=x^2-2xy+4y^2\)

\(\Rightarrow\left(...\right)=\frac{x^2-2xy+4y^2}{4}\)

Vậy đccm

#Học tốt

Khách vãng lai đã xóa
Lê Thị Nhung
26 tháng 2 2020 lúc 14:29

Ta có VP = \(\frac{x^3+8y^3}{8}\)

VP=\(\frac{x^3}{8}+y^3\)=\(\left(\frac{x}{2}\right)^3+y^3\)=\(\left(\frac{x}{2}+y\right)\).\(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)

Vậy \(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)

Khách vãng lai đã xóa
Lê Trung Hiếu
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 23:25

a/ĐKXĐ: \(y\ne4\)

Đặt \(y-4=x\)

\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne1\)

Đặt \(x-1=y\)

\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)

\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 23:28

c/ ĐKXĐ: \(x\ne5\)

\(\Leftrightarrow2x-5=3x-15\)

\(\Leftrightarrow x=10\)

d/ ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)

\(\Leftrightarrow3x=-24\Rightarrow x=-8\)

e/ ĐKXĐ: \(x\ne2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)

f/ DKXĐ: \(x\ne-\frac{1}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)

\(\Leftrightarrow4x^2-1=8\)

\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)

Khách vãng lai đã xóa
nam do
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
poppy Trang
Xem chi tiết
Diệu Huyền
25 tháng 1 2020 lúc 1:38

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

Khách vãng lai đã xóa
Trần Thanh Phương
25 tháng 1 2020 lúc 9:18

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

Khách vãng lai đã xóa
La. Lousia
Xem chi tiết
Minh trí Vũ
26 tháng 9 2020 lúc 23:28

Cần cù thì bù thông minh

Chỉ có lm thì ms có ăn

Ko lm mà mún đòi ăn

Thì có ăn ***** ăn đầu bird

Trích chú của mày

Khách vãng lai đã xóa
nguyen van giang
Xem chi tiết
Thắng Nguyễn
18 tháng 9 2016 lúc 23:07

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

Nguyễn Bá Hùng
Xem chi tiết
Phùng Minh Quân
15 tháng 7 2020 lúc 19:01

đặt \(\left(a;b;c\right)=\left(x;2y;3z\right)\)\(\Rightarrow\)\(abc=1\)

bđt \(\Leftrightarrow\)\(\Sigma\frac{1}{a^3+b^3+1}\le1\)

\(VT\le\Sigma\frac{1}{ab\left(a+b\right)+abc}=\Sigma\frac{1}{ab\left(a+b+c\right)}=1\)

Khách vãng lai đã xóa
qiwuetdgw12
20 tháng 2 2023 lúc 12:52

loading...