Những câu hỏi liên quan
Kiều_My
Xem chi tiết
Khôi 2k9
Xem chi tiết
Kiệt Nguyễn
9 tháng 12 2020 lúc 20:21

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiều_My
Xem chi tiết
NGUYEN ANH
Xem chi tiết
Diệu Huyền
25 tháng 11 2019 lúc 11:29

Căn bậc hai. Căn bậc ba

Bình luận (0)
 Khách vãng lai đã xóa
poppy Trang
Xem chi tiết
Aki Tsuki
2 tháng 12 2019 lúc 10:59

đề có nhầm lẫn gì không bạn?

Bình luận (0)
 Khách vãng lai đã xóa
Aki Tsuki
2 tháng 12 2019 lúc 11:14

áp dụng bđt cosi có:
\(\left\{{}\begin{matrix}x^3+y^2\ge2xy\sqrt{x}\\y^3+z^2\ge2yz\sqrt{y}\\z^3+x^2\ge2zx\sqrt{z}\end{matrix}\right.\)

\(\Rightarrow VT\le\frac{2\sqrt{x}}{2xy\sqrt{x}}+\frac{2\sqrt{y}}{2yz\sqrt{y}}+\frac{2\sqrt{z}}{2zx\sqrt{z}}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Ta cần cm: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Rightarrow xy+yz+zx\ge x^2+y^2+z^2\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\le0\)(sai)

=> đề sai

Bình luận (0)
 Khách vãng lai đã xóa
hoàng đẹp trai
24 tháng 12 2019 lúc 19:43

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Bình luận (0)
 Khách vãng lai đã xóa
Đinh Hạnh
Xem chi tiết
Hoàng Thị Ánh Phương
27 tháng 2 2020 lúc 9:33

Từ giả thiết suy ra : \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Nên ta có : \(\frac{\sqrt{1+x^2}}{x}=\sqrt{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}\le\frac{1}{2}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " \(\Leftrightarrow y=z\)

Vậy \(\frac{1+\sqrt{1+x^2}}{x}\le\frac{1}{2}\left(\frac{4}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có :

\(\frac{1+\sqrt{1+y^2}}{y}\le\frac{1}{2}\left(\frac{1}{x}+\frac{4}{y}+\frac{1}{z}\right);\frac{1+\sqrt{1+z^2}}{z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Vậy ta có :

\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " \(\Leftrightarrow x=y=z\)

Ta có :

\(\left(x+y+z\right)^2-3\left(xy+yz+xx\right)=...=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\ge0\)

Nên \(\left(x+y+x\right)^2\ge3\left(xy+yz+xx\right)\)

\(\Rightarrow\left(xyz\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow3\frac{xy+yz+xz}{xyz}\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)

Vậy \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)

Dấu " = " \(\Leftrightarrow x=y=z\)

Chúc bạn học tốt !!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 2 2020 lúc 9:01

\(\frac{1+\frac{1}{2}.2.\sqrt{1+x^2}}{x}\le\frac{1+\frac{1}{4}\left(x^2+5\right)}{x}=\frac{x}{4}+\frac{9}{4x}\)

\(\Rightarrow VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4xyz}=\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4\left(x+y+z\right)}\)

\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{3\left(x+y+z\right)^2}{4\left(x+y+z\right)}=x+y+z=xyz\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
alibaba nguyễn
11 tháng 7 2017 lúc 14:04

Làm biếng nghĩ quá. Chơi cách này cho mau vậy.

\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)

\(\Leftrightarrow\frac{x}{\sqrt{3\left(1-x\right)\left(1+x\right)}}+\frac{y}{\sqrt{3\left(1-y\right)\left(1+y\right)}}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{x}{2-x}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{1-y}{1+y}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow4y^2-4y+1\ge0\)

\(\Leftrightarrow\left(2y-1\right)^2\ge0\left(đung\right)\)

Bình luận (0)
Nguyễn Minh Toàn
Xem chi tiết
Thanh Tùng DZ
21 tháng 5 2019 lúc 17:22

nhìn số 82 = 92 + 1 mà nghĩ ra p2

Bình luận (0)
Thanh Tùng DZ
21 tháng 5 2019 lúc 17:29

Ta có :

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

tương tự : \(\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}.\left(y+\frac{9}{z}\right)\); \(\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}.\left(z+\frac{9}{x}\right)\)

\(\Rightarrow\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

Bình luận (0)
tth_new
22 tháng 5 2019 lúc 8:21

Chơi thêm một phát nữa cho phức tạp :D. Cách này em làm chơi thôi á! Dài dòng lắm!

Ta chứng minh BĐT phụ (hay còn gọi là Mincopxki): \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) với a,b,c,d thuộc R.

Bình phương hai vế và khai triển ra hết:,ta có:\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(ac+bd\right)\)

Bình phương hai vế, BĐT tương đương với:

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\). Nhân tung hết mấy cái ngoặc ra,ta cần c/m:

\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2+b^2c^2\ge2.ad.bc\Leftrightarrow\left(ad-bc\right)^2\ge0\) (BĐT đúng)

Dấu "=" xảy ra khi \(ad=bc\).

Áp dụng BĐT trên hai lần,ta có:

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{81\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}-80\left(x+y+z\right)^2}\)

\(\ge\sqrt{2\sqrt{81\left(x+y+z\right)^2.\frac{81}{\left(x+y+z\right)^2}}-80.1^2}\) (Cô si hay AM-GM các kiểu -__-")

\(=\sqrt{2.81-80}=\sqrt{82}\left(Q.E.D\right)\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) (anh/chị giải rõ ra nha :( máy em bị lag rồi)

Bình luận (0)
Võ Huy Hoàng
Xem chi tiết
Trần Quốc Thắng
9 tháng 4 2021 lúc 20:13

ĐỊT MẸ

Bình luận (0)
 Khách vãng lai đã xóa