Đặt \(\sqrt{x};\sqrt{y}=\left(a;b\right)\)
\(VT=\frac{a^2b+ab^2}{a^2+b^2}-\frac{a^2+b^2}{2}\le\frac{ab\left(a+b\right)}{2ab}-\frac{a^2+b^2}{2}\)
\(VT\le\frac{a+b}{2}-\frac{a^2+b^2}{2}\le\frac{a+b}{2}-\frac{\left(a+b\right)^2}{4}=\frac{1}{4}-\frac{1}{4}\left(a+b-1\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\) hay \(x=y=\frac{1}{4}\)
BĐT sai hoàn toàn, thử với giá trị nào cũng sai