Cho x+y+z=0 và xy+yz+zx=0
Tính \(T=\left(x-1\right)^{2013}+y^{2013}+\left(z+1\right)^{2013}\)
cho 3 số x,y,z thảo mãn điều kiện \(x+y+z=0,xy+yz+zx=0\)
tính giá trị của biểu thức \(S=\left(x-1\right)^{2011}+\left(y-1\right)^{2012}+\left(z+1\right)^{2013}\)
Do \(x+y+z=0;xy+yz+xz=0\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2=0\)\(\Rightarrow x=y=z=0\)
\(\Rightarrow S=\left(x-1\right)^{2011}+\left(y-1\right)^{2012}+\left(z+1\right)^{2013}=\left(-1\right)^{2011}+\left(-1\right)^{2012}+1^{2013}=1\)
Bài 1: Cho \(\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\). CMR: \(x^{2013}+y^{2013}+z^{2013}=\left(x+y+z\right)^{2013}\)
Từ giả thiết , ta có :
( x + y + z)( xy + yz + xz ) = xyz
x( xy + yz + xz) + y( xy + yz + xz ) + z( xy + yz + xz ) - xyz = 0
x2y + xyz + x2z + xy2 + y2z + xyz + xyz + yz2 + xz2 - xyz = 0
x2y + x2z + xy2 + y2z + yz2 + xz2 + 2xyz = 0
xy( x + y) + xz( x + z) + yz( y + z) + 2xyz = 0
xy( x + y + z) + xz( x + y + z) + yz( y + z) = 0
( x + y + z)x( y + z) + yz( y + z) = 0
( y + z)( x2 + xy + xz + yz ) = 0
( y + z)[ x( x + y ) + z( x + y) ] = 0
( y + z)( y + x )( x + z) = 0
Suy ra :
* x + y = 0 --> x = - y . Thay vào đẳng thức cần chứng minh , ta có
( - y)2013 + y2013 + z2013 = ( - y + y + z)2013
Khi đó , ta có : z2013 = z2013 , luôn đúng
* Tương tự , thử với các trường hợp khác : y = - z ; x = - z
Vậy , đảng thức được chứng mình
Ta có (x+y+z)(xy+yz+xz)=xyz
<=>\((x+y+z)(\frac{xyz}{z}+\frac{xyz}{y}+\frac{xyz}{x})=xyz \)
<=>(x+y+z)(\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=1 \)
<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z} \)
<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0 \)
<=>\(\frac{x+y}{xy}+\frac{x+y}{z(x+y+z)} \)
<=>\((x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)}) \)
<=>\((x+y)(\frac{xz+yz+z^2+xy}{xyz(x+y+z)} \)
<=>\((x+y)(y+z)(x+z)(\frac{1}{xyz(x+y+z)} )\)
=>x=-y
hoặc y=-z
hoặc x=-z
Thay vào Pt => đpcm
cho \(\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)
chứng minh \(x^{2013}+y^{2013}+z^{2013}=\left(x+y+z\right)^{2013}\)
ta có (x+y+z).(xy+yz+zx) - xyz = 0
<=> (x+y).(y+z).(z+x) = 0
=> vế trái phải có 1 nhân tử bằng 0 ,chẳng hạn x + y = 0 => x = -y
=> x^2013 = -y^2013
=> x^2013 + y^2013 + z^2013 = - y^2013 + y^2013 + z^2013 + = z^2013 = ( x +y + z )^2013
ta có
(x+y+z).(xy+yz+zx) - xyz = 0 <=> (x+y).(y+z).(z+x) = 0 => vế trái phải có 1 nhân tử bằng 0 ,chẳng hạn x + y = 0 => x = -y => x^2013 = -y^2013 => x^2013 + y^2013 + z^2013 = - y^2013 + y^2013 + z^2013 + = z^2013 = ( x +y + z )^2013
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
Cho 3 số x,y,z khác 0 thỏa mãn \(x^2+y^2+z^2=xy+yz+zx\)
Tính giá trị biểu thức A=(2015-\(\frac{2014x}{y}\))(\(\left(2014-\frac{2013y}{z}\right)\left(2013-\frac{2012z}{x}\right)\)
\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(A=\left(2015-2014\right)\left(2014-2013\right)\left(2013-2012\right)=1\)
tính tổng sau đây với x,y,z ddoooi một khác nhau và khác 0
F=\(\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
Bạn quy đồng rồi phân tích tử thành nhân tử rồi ra à.
Tính tổng sau với x,y,z đôi một khác nhau và khác 0
\(F=\frac{2013+x}{x\left(x-y\right)\left(x-z\right)}+\frac{2013+y}{y\left(y-z\right)\left(y-x\right)}+\frac{2013+z}{z\left(z-x\right)\left(z-y\right)}\)
Cho:( x+y+z)(xy+yz+zx)=xyz.CMR: x^2013 + y^2013 + z^2013 = (x+y+z)^2013
Phân tích nhân tử là được
\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-y\\y=-z\\z=-x\end{cases}}\)
Với \(x=-y\) thì
\(\hept{\begin{cases}x^{2013}+y^{2013}+z^{2013}=z^{2013}\\\left(x+y+z\right)^{2013}=z^{2013}\end{cases}}\)
\(\Rightarrow x^{2013}+y^{2013}+z^{2013}=\left(x+y+z\right)^{2013}\)
Tương tự cho các trường hợp còn lại.
1/Cho x,y là các số thực dương thỏa mãn: x+y≤4. Tìm GTNN \(P=\dfrac{x^4}{\left(y-1\right)^3}+\dfrac{y^4}{\left(x-1\right)^3}\)
2/ Cho x,y,z nguyên thỏa mãn :x+y+z=2013.Chứng minh:
\(Q=\left(x^2+xy+yz\right)^3+\left(y^2+yz+xz\right)^3+\left(z^2+xz+xy\right)^3⋮3\)