cho a b c là ba số thực sao cho a+b=c-2 và ab=2c^2-3c+1
Tìm gtln của P=a^2+b^2
Cho a>=0, b>=0, c>=0, a+b+c=1
Tìm GTLN của M=\(\sqrt{2a^2+3a+4}+\sqrt{2b^2+3b+4}+\sqrt{2c^2+3c+4}\)
\(\left\{{}\begin{matrix}a;b;c\ge0\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow a\left(a-1\right)\le0\Rightarrow a^2\le a\)
\(\Rightarrow\sqrt{2a^2+3a+4}=\sqrt{a^2+a^2+3a+4}\le\sqrt{a^2+a+3a+4}=a+2\)
Tương tự và cộng lại:
\(\Rightarrow M\le a+2+b+2+c+2=7\)
\(M_{max}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cho a,b,c là các số thực ko âm thỏa \(a+b+c=1\)
Tìm GTLN \(P=\left(a+2b+3c\right)\left(6a+3b+2c\right)\)
P/s: Nếu làm theo AG-GM thì cho e hỏi là tại sao \(2\left(\dfrac{4-\dfrac{b}{2}}{2}\right)^2=8\) ạ
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự:
\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ca}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=1\)
\(P_{max}=1\) khi \(a=b=c=\dfrac{2}{3}\)
Cho a,b,c là 3 số dương thỏa mãn đk \(ab^2c^2+a^2c+b=3c^2\)
Tìm GTLN của biểu thức \(P=\frac{c^4}{1+c^4\left(a^4+b^4\right)}\).
Cho a, b, c là 3 số thực sao cho a+b=c-2 và ab=2c2-3c+1. Tìm giá trị lớn nhất của biểu thức P = a2+b2.
Cho a,b,c là ba số thực thỏa mãn a + b + c =2
Tính GTLN của biểu thức \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\)
\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)
thử dùng cô si đi
sửa ab thành a2 mới làm như Thành được nhé :v
Ta có:
\(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\)
\(=\frac{ab}{\sqrt{ab+c\left(a+b+c\right)}}+\frac{bc}{\sqrt{bc+a\left(a+b+c\right)}}+\frac{ca}{\sqrt{ca+b\left(a+b+c\right)}}\)
\(=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}\)
\(\le\frac{1}{2}.\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\right)\)
\(=\frac{1}{2}.\left(a+b+c\right)=\frac{2}{2}=1\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)
Cho ba số a,b,c là các số thực dương tìm GTLN của biểu thức \(\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}+\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}\)
1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.
2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=1. Tìm GTLN của biểu thức P=(a+2b+3c)(6a+3b+2c)
2) Cho a,b,c là các số thực không âm có tổng bằng 3. Tìm GTLN của biểu thức P=(5a+b)(b2+4ac)
@TFBoys @Unruly Kid
1) \(P=\left(a+2b+3c\right)\left(6a+3b+2c\right)\)
\(P=\left[a+2b+3\left(1-a-b\right)\right]+\left[6a+3b+2\left(1-a-b\right)\right]=\left(3-2a-b\right)\left(2+4a+b\right)=2\left(3a-2b-b\right)\left(1+2a+\dfrac{b}{2}\right)\)
Lợi dụng AM-GM, ta có:
\(P\le2\left(\dfrac{3-2a-b+1+2a+\dfrac{b}{2}}{2}\right)^2=2.\left(\dfrac{4-\dfrac{b}{2}}{2}\right)^2=8\)
MaxP=8 khi \(a=c=\dfrac{1}{2};b=0\)
2) Sử dụng AM-GM tìm được Max=80 khi b=0;a=2c=2