giải và biện luận hệ phương trình
\(\left\{{}\begin{matrix}2x+ay=5\\ax+2y=2a+1\end{matrix}\right.\)
Giải và biện luận hệ pt: \(\left\{{}\begin{matrix}2x+ay=4\\\\ax-3y=5\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=1\\mx+y=2\end{matrix}\right.\)
giải và biện luận hệ phương trình với m là tham số
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm ?
a) \(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}ax+2y=a\\3x-4y=b+1\end{matrix}\right.\)
a) Xét \(a=0\) . Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3x=5\\2x+y=b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy khi \(a=0\) và mỗi giá trị \(b\in R\) hệ có duy nhất nghiệm: \(\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi và chỉ khi:
\(\dfrac{2}{3}=\dfrac{1}{a}=\dfrac{b}{5}\).
\(\dfrac{2}{3}=\dfrac{1}{a}\)\(\Leftrightarrow a=\dfrac{3}{2}\); \(\dfrac{2}{3}=\dfrac{b}{5}\)\(\Leftrightarrow b=\dfrac{10}{3}\).
Vậy \(\left(a;b\right)=\left(\dfrac{3}{2};\dfrac{10}{3}\right)\) thì hệ có vô số nghiệm.
b) Xét a = 0. Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2y=0\\3x-4y=b+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1+4y}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy khi a = 0 và với mỗi \(b\in R\) hệ phương trình có nghiệm duy nhất là: \(\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi:\(\dfrac{3}{a}=\dfrac{-4}{2}=\dfrac{b+1}{a}\).
\(\dfrac{3}{a}=\dfrac{-4}{2}\)\(\Rightarrow a=\dfrac{-3}{2}\); \(\dfrac{-4}{2}=\dfrac{b+1}{a}\)\(\Rightarrow b=-2a-1\)\(\Leftrightarrow b=2\).
Vậy \(\left(a;b\right)=\left(\dfrac{-3}{2};2\right)\) hệ có vô số nghiệm.
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
1, Giải và biện luận theo số nguyên m phương trình vô định sau đây
3x+(2m-1)y=m+1.
2,Giải và biện luận theo số nguyên m hệ
phương trình vô định sau đây
\(\left\{{}\begin{matrix}3x+2y=1\\3x+6y+\left(m+1\right)z=m-2\end{matrix}\right.\)
giải hệ phương trình
a
\(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}2x+2y=5\\x-2y=1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}2x+3y=5\\3x-2y=1\end{matrix}\right.\)
a, b và c có thể dùng phương pháp thế hoặc cộng trừ đại số
\(a,\left\{{}\begin{matrix}x=1-y\\1-y-y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\1-2y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\2y=6\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\y=3\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Kết luận hpt có 1 nghiệm duy nhất (x;y)=(-2;3)
b và c làm tương tự
a.\(\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\x-y=-5\end{matrix}\right.\) ( cộng đại số bạn nhé )
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
c.\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\9.1-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
\(\Leftrightarrow x+y+x-y=-4\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\)
Thay \(x=-2\) vào \(x+y=1\)\(\Leftrightarrow-2+y=1\)\(\Leftrightarrow y=3\)
Vậy \(x=-2;y=3\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2x+5y=5\\3x-5y=-30\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}4x-3y=-5\\3x+2y=-8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}5x+4y=-3\\3x+2y=11\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x-4y=12\\5x+3y=17\end{matrix}\right.\)
e.
\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
f.
\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
d.
\(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\12x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\17x=68\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3x-32}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương pháp thế
1) \(\left\{{}\begin{matrix}x-2y=4\\-2x+5y=-3\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x+2y=4\\-3x+y=7\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)