Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bụng ღ Mon
Xem chi tiết
Nguyễn Linh Chi
19 tháng 6 2020 lúc 15:58

và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)

=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương 

=> \(\sqrt{503y}\) là số nguyên dương 

mà 503 là số nguyên tố và 0 < y < 2012

=> y = 503 

=> x = 503

Kết luận:...

Khách vãng lai đã xóa

Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải? 

Khách vãng lai đã xóa
hyun mau
Xem chi tiết
Trần Thị Loan
9 tháng 4 2015 lúc 8:36

từ đề bài => 0 < x; y < 2012  và

\(\sqrt{y}=\sqrt{2012}-\sqrt{x}\Rightarrow y=\left(\sqrt{2012}-\sqrt{x}\right)^2=2012+x-2\sqrt{2012}\sqrt{x}=2012+x-4.\sqrt{503.x}\)Vì y nguyên nên \(\sqrt{503.x}\) nguyên => x = 503.k2 Mà 0<  x < 2012 =>0<  503. k2 < 2012 => 0< k2 < 4 => k2 = 1

=> x = 503 => y = 2012 + 503 - 4.503 = 503 

Vậy x = y = 503

Minh Hiếu
Xem chi tiết
Đỗ Thanh Hải
4 tháng 1 2022 lúc 20:12

Tham khảo nha e

undefinedundefined

❤X༙L༙R༙8❤
4 tháng 1 2022 lúc 20:15

đăng câu hỏi kiểu j mà đặng đc lên như thế này đấy

 

Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 20:24

1.

Đặt \(\sqrt[3]{2+\sqrt{b}}=x;\sqrt[3]{2-\sqrt{b}}=y\)

Do \(x>0\Rightarrow x^2+y^2-xy=\dfrac{3}{4}x^2+\left(\dfrac{1}{2}x-y\right)^2>0\)

\(PT\Leftrightarrow\dfrac{x^3+y^3}{a}+xy=x^2+y^2\Leftrightarrow\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{a}=x^2-xy+y^2\\ \Leftrightarrow\left(x^2-xy+y^2\right)\left(\dfrac{x+y}{a}-1\right)=0\\ \Leftrightarrow\dfrac{x+y}{a}=1\\ \Leftrightarrow\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a\left(1\right)\\ \Leftrightarrow\left(\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}\right)^3=a^3\\ \Leftrightarrow4+3a\sqrt[3]{4-b}=a^3\left(2\right)\\ \Rightarrow4-b=\left(\dfrac{a^3-4}{3a}\right)^3\)

Mặt khác \(b\in \mathbb{Z^+}\)

\(\Rightarrow\left(a^3-4\right)⋮3a\Rightarrow\left(a^3-4\right)⋮a\\ \Rightarrow4⋮a\Rightarrow a\in\left\{1;2;4\right\}\)

Với \(a=1\Rightarrow4-b=1\Rightarrow b=5\)

Với \(a=2;a=4\Rightarrow b\notin \mathbb{Z}\)

Vậy \(\left(a;b\right)=\left(1;5\right)\)

yeens
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2021 lúc 22:00

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

Nguyen Minh
Xem chi tiết
Vuy năm bờ xuy
3 tháng 6 2021 lúc 2:05

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Đặng Khánh
3 tháng 6 2021 lúc 8:49

(x,y) hoán vị của (4,9) . có vẻ hoạt động

Nguyễn Thị Nga
Xem chi tiết
alibaba nguyễn
10 tháng 1 2018 lúc 14:57

\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)

Ta có VP là số nguyên nên VT cũng phải là số nguyên

Giả sử \(yz=a^2\) thì VT không phải số nguyên

Nên yz không phải số chính phương.

Nên để VT là số nguyên thì chỉ có thể là O

\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)

\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương

Vậy PT vô nghiệm

xuka
Xem chi tiết
Kawasaki
Xem chi tiết
Bình Nguyễn
19 tháng 10 2019 lúc 20:46

Mong các bạn ủng hộ cho kênh youtube của mình nha !!

Tên youtube:P Music

Link:https://www.youtube.com/channel/UCs0JKZKs4zoDYqqtAmtiBBA?view_as=subscriber

Nhóm của mình gồm có:
Hậu Trần YTVN

Vanh_GoG_VN

M.Ichibi

P Music(là mình)

Mong các bạn ủng hộ nha !!

Khách vãng lai đã xóa
giang ho dai ca
Xem chi tiết