giải PT:
\(x-\sqrt{5x}+4=2\sqrt{x-1}\)
GIẢI CÁC PT SAU:
\(\sqrt{x^2+5x+1}=\sqrt{x+1}\)
\(\sqrt{x^2+2x+4}=\sqrt{2-x}\)
\(\sqrt{2x+4}-\sqrt{2-x}=0\)
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
d.
ĐKXĐ: \(x>1\)
\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)
\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)
\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)
\(\Leftrightarrow1-\dfrac{1}{ab}=0\)
\(\Leftrightarrow ab=1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow x^3-1=1\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
Giải pt
\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
giải pt sau
a)\(\sqrt{x^2-6x+9}=3\)
b)\(\sqrt{x+2\sqrt{x-1}}=2\)
c)\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)
d)\(\sqrt{x-4}+\sqrt{x+1}=5\)
Help
a:
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
=>|x-3|=3
=>x-3=3 hoặc x-3=-3
=>x=0 hoặc x=6
b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
=>\(\left|\sqrt{x-1}+1\right|=2\)
=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)
=>x-1=1
=>x=2
c:
ĐKXĐ: x>4/5
PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
d: ĐKXĐ: x-4>=0 và x+1>=0
=>x>=4
PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)
=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)
=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)
=>\(\sqrt{x^2-3x-4}=14-x\)
=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196
=>x<=14 và -3x-4=-28x+196
=>x<=14 và 25x=200
=>x=8(nhận)
a) \(\sqrt{x^2-6x+9}=3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
\(\Leftrightarrow\left|x-3\right|=3 \)
TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)
Pt trở thành:
\(x-3=3\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=3+3\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)
Pt trở thành:
\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=-3+3\)
\(\Leftrightarrow x=0\left(tm\right)\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))
\(\Leftrightarrow x+2\sqrt{x-1}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4-x\)
\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)
\(\Leftrightarrow4x-4=16-8x+x^2\)
\(\Leftrightarrow x^2-12x+20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))
\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)
\(\Leftrightarrow5x-4=4x+8\)
\(\Leftrightarrow x=12\left(tm\right)\)
giải pt \(\sqrt{x-2}+\sqrt{4-x}+\sqrt{2x-5}=2x^2-5x\)
2) \(x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
giải pt \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3x^2-3x+3}-\sqrt{x^2-3x+4}\)
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
Giải pt sau:
\(\sqrt{x-2}+\sqrt{4-x}=2x^{^2}-5x-1\)
Giải giúp e vss ạ!!!!
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549
giải pt :
a, \(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}=\sqrt{3x^2-5x-1}+\sqrt{x^2-2}\)
b, \(\sqrt{x}+\sqrt{3-x}=x^2-x-2\)
c, \(\sqrt{x+6}+\sqrt{x-1}=x^2-1\)
Giải PT : \(\sqrt{3x+1}\) + \(\sqrt{5x+4}\) = \(3x^2\) - \(x\) + 3
Lời giải:
ĐKXĐ:.........
PT \(\Leftrightarrow 3(x^2-x)+[(x+1)-\sqrt{3x+1}]+[(x+2)-\sqrt{5x+4}]=0\)
\(\Leftrightarrow 3(x^2-x)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow (x^2-x)\left[3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right]=0\)
Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương
$\Rightarrow x^2-x=0$
$\Leftrightarrow x(x-1)=0$
$\Rightarrow x=0$ hoặc $x=1$ (đều tm)