Cho x e { -2;-1;0;1;......;11}
y e {-89;-88;-87;.....;-1;0;1}
Tìm GTLN và GTNN của hiệu x-y
Cho tập hợp E= { x thuộc Z | ( 3x2 +8 ) / ( x2 +1 ) thuộc Z } . Tìm tập X sao cho X giao E= { -2; 2} và X hợp E= { -2;-1;0;1;2 }. Chỉ rõ tính chất đặc trưng cho các phần tử của X
Cho tập hợp E= { x thuộc Z | ( 3x2 +8 ) / ( x2 +1 ) thuộc Z } . Tìm tập X sao cho X giao E= { -2; 2} và X hợp E= { -2;-1;0;1;2 }. Chỉ rõ tính chất đặc trưng cho các phần tử của X
\(\dfrac{3x^2+8}{x^2+1}\in Z\)
\(\Leftrightarrow3x^2+3+5⋮x^2+1\)
\(\Leftrightarrow x^2+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)
E={0;2;-2}
E giao X={-2;2} nên trong tập X có -2;2
X hợp E={-2;-1;0;1;2} nên trong tập X có -1;1
=>X={-1;1;-2;2}
Tính chất đặc trưng là X={x∈Z|x∈Ư(2)}
Cho tập hợp E= { x thuộc Z | ( 3x2 +8 ) / ( x2 +1 ) thuộc Z } . Tìm tập X sao cho X giao E= { -2; 2} và X hợp E= { -2;-1;0;1;2 }. Chỉ rõ tính chất đặc trưng cho các phần tử của X
Có \(\dfrac{3x^2+8}{x^2+1}=3+\dfrac{5}{x^2+1}\). Do đó
\(x\in E\Leftrightarrow\dfrac{5}{x^2+1}\in\mathbb{Z}\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=1\\x^2+1=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)
Vì vậy \(E=\left\{0;-2;2\right\}\)
Nếu \(X\cup E=\left\{-2;-1;0;1;2\right\}\) thì \(X\)phải là tập con của \(\left\{-2;-1;0;1;2\right\}\). Kết hợp điều kiện \(X\cap E=\left\{-2;2\right\}\) suy ra \(X=\left\{-2;0;2\right\}\)
Cho biểu thức: E=(x^2+4/x^2-4+6/6-3x+1/x+2):(x-2+10-x^2/x+2).
a) Rút gọn E
b) Tính E khi |2x-3|=1
c) Với giá trị nào của x thì E<0
d) Tìm x để E=3-x
a, \(E=\left(\frac{x^2+4}{x^2-4}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x^2+4}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x^2+4-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{6}{x+2}\right)\)
\(=\frac{x^2+4-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{x^2-x-2}{6\left(x-2\right)}=\frac{x+1}{6}\)
b, Ta có : \(\left|2x-3\right|=1\Leftrightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(ktmđk\right)\\x=1\end{cases}}}\)
Thay x = 1 vào biểu thức E ta được : \(\frac{1+1}{6}=\frac{2}{6}=\frac{1}{3}\)
Vậy với x = 1 thì E = 1/3
c, Ta có : \(E< 0\)hay \(\frac{x+1}{6}< 0\Rightarrow x+1>0\)( do 6 > 0 )
\(\Leftrightarrow x>-1\)
Với với x > -1 thì E < 0
d, Ta có E = 3 - x hay \(\frac{x+1}{6}=3-x\Rightarrow x+1=18-6x\Leftrightarrow7x=17\Leftrightarrow x=\frac{17}{7}\)
cho P(x) = ax^4 +bx^3 +cx^2 +dx +e. tìm a, b ,c ,d ,e biết P(x) chia hết cho x^2 -1, chia cho x^2 +2 dư x P(2) = 2012
Cho E = \(\dfrac{\sqrt{x}}{x+2\sqrt{x}}\): \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
a) Rút gọn biểu thức E
b) Tìm x khi E = \(\dfrac{2}{5}\)
a: ĐKXĐ: x>0
\(E=\dfrac{\sqrt{x}}{x+2\sqrt{x}}:\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\dfrac{1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+2+x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
b: E=2/5
=>\(\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{2}{5}\)
=>\(5\sqrt{x}=2x+2\sqrt{x}+4\)
=>\(2x-3\sqrt{x}+4=0\)
=>\(x-\dfrac{3}{2}\cdot\sqrt{x}+2=0\)
=>\(x-2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}=0\)
=>\(\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{23}{16}=0\)(vô lý)
Vậy: \(x\in\varnothing\)
CHO E=\(\left(\frac{x^3}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{2+x}\right):\left(x+2+\frac{10-x^2}{x-2}\right)\)
a) Rut gon E
b) Tim x thuoc Z sao cho E thuoc Z
Cho biểu thức:
E = (\(\dfrac{1}{x+\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}+1}\)) : \(\dfrac{2}{\sqrt{x}-2}\)
a) Rút gọn E
b) Tính giá trị E khi x = 19 - \(8\sqrt{3}\)
c) tìm x để E = -1
d) Tìm x để E = \(\dfrac{1}{\sqrt{x}}\)
e) Tìm x để E > 0
f) So sánh E với \(\dfrac{1}{2}\)
g) Tìm x \(\in\) Z để \(\dfrac{1}{E}\)\(\in\) Z
h) Với x > 4. So sánh: E và \(\sqrt{E}\)
\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)
\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)
a) Rút gọn biểu thức E
b) tìm gt của x để E>1
c) với x > 1 tìm giá trị nhỏ nhất của E
d) tìm x để E = \(\dfrac{9}{2}\)
Đề mắc lỗi hiển thị rồi. Bạn xem lại.
E = x - 5/ x + 2 (x thuộc Z và x không bằng -2)
Tìm x sao cho E thuộc Z
Giúp mình gấp!!
Để E là số nguyên thì \(x-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-1;-3;5;-9\right\}\)