Cho các số dương x,y thỏa mãn:
\(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\)
Tính:
\(x+y\)
Cho các số dương x,y thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) Tính x+y
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Lời giải:
$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$
$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$
$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$
$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$
$\Leftrightarrow 4Q=3$
$\Leftrightarrow Q=\frac{3}{4}$
Cho x, y là các số thực dương thỏa mãn \(x^2+y^2=1\). Chứng minh rằng
\(x\sqrt{1+y}+y\sqrt{1+x}\le\sqrt{2+\sqrt{2}}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)
\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
cho các số thực dương x,y,z thỏa mãn điều kiện \(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\) =3030 . tính giá trị của biểu thức \(A=x^2+y^2+z^2\)
ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)
Ta có:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)
\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)
\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)
\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)
\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)
\(\Rightarrow A=x^2+y^2+z^2=3030\)
Vậy \(A=3030\)
1) Cho các số thực dương x,y,z thỏa mãn điều kiện x\(\sqrt{2020-y^2}\) + y\(\sqrt{2020-z^2}\) +z\(\sqrt{2023-x^2}\)=3030. Tính giá trị vủa biểu thức A=x\(^2\)+\(y^2\)+\(z^2\)
Lời giải:
Áp dụng BĐT AM-GM:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:
\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)
Khi đó:
$A=3(\sqrt{1010})^2=3030$
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)
Cho 2 số thực dương \(x,y\) thỏa mãn \(x+y+xy=3\)
Tìm Min \(\dfrac{x\sqrt{x}}{\sqrt{x+3y}}+\dfrac{y\sqrt{y}}{\sqrt{y+3x}}\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó
cho các số dương X,Y,Z thỏa mãn :x\(^3\)+Y\(^3\)+Z\(^3\)=1
chứng minh rằng; \(\dfrac{X^2}{\sqrt{1-X^2}}\)+\(\dfrac{Y^2}{\sqrt{1-Y^2}}\)+\(\dfrac{Z^2}{\sqrt{1-Z^2}}\)\(\ge\)2
Đề bài chắc chắn là có vấn đề
Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)
Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra
Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
Làm tương tự với 2 số hạng còn lại, sau đó cộng vế
Nhưng đẳng thức không xảy ra.